DEPARTMENT OF BOTANY

CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOMES-BASED CURRICULAR FRAMEWORK (LOCF)

(Semesters- I-IV)

BACHELOR OF BOTANY (2023 – 2026 Batch)

Programme Learning Outcomes (PLO's)

Courses within the Botany curriculum will address goals and objectives at the appropriatelevel through measureable student learning outcomes developed by course instructors

- **PLO 1**: Students will be able to remember, comprehend, apply, analyze and synthesize theore concepts in Botany, like evolution, biodiversity, structure and function, information flow, exchange and storage, pathways and transformations of energy and matter.
- **PLO 2**: Students will develop the ability to apply and understand the defining characteristics of various processes of science and its uncertainty.
- **PLO 3**: Students will also develop the ability to practice the skills of the scientific method. Engage in research projects and apply the quantitative skills to biological problems.
- **PLO 4**: Students will be able to communicate and collaborate within and outside of biology and tap into the interdisciplinary nature of science.
- **PLO 5**: Students will understand the relationship between science and society and to evaluate theimpact of science as well as ethical implications of science in the society.

PROGRAMME SPECIFIC OBJECTIVES (PSOs) At the end of the programme the student will

PSO1: Obtain strong foundation in classical botany, interdisciplinary subjects such as Bioinformatics, Biostatistics, and advance topics in Cell and Molecular biology, Biochemistry and Plant Biotechnology.

PSO2: Build capacity in Horticulture and production of cut flowers from the skill based courses offered

PSO3: Carry out individual short term internship and project worktoacquire knowledge on research using basic and advanced instruments/equipments.

PSO4: Find opportunities for higher studies in top ranking universities.

PSO5: Gain career in teaching/research in Botany.

College of Excellence, 2024-7th Rank Autonomous and Affiliated to Bharathiar University Reaccredited with A⁺⁺ grade by NAAC, An ISO 9001:2015 Certified Institution Peelamedu, Coimbatore-641004

DEPARTMENT OF BOTANY CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOMES- BASED CURRICULARFRAMEWORK (LOCF)

BACHELOR OF BOTANY (2023-2026 Batch) SYLLABUS & SCHEME OF EXAMINATION Applicable to students admitted during the academic year 2023 – 2024 onwards (I-IV Sem)

SEM	Part	Part Subject Code Title of the Paper				Ľ		J (Examination			
					ior	ction week hou		n o tioi		Mark		ts
					Instruction hours/week	Contact hours	Tutorial	Duration of Examination	CA	ESE	TOTAL	Credits
	I	TAM2301/ HIN2301/ FRE2301	Language T/H/F Paper I	Language	6	88	2	3	25	75	100	3
	II	ENG2301	English Paper-I	English	6	88	2	3	25	75	100	3
		PL23C01	Core Paper I- Microbiology & Plant diversity I	CC	6	88	2	3	25	75	100	5
		PL23CP1	Core Practical – I	CC	3	45	-	-	-	-	-	-
I		CE23A01	Allied Chemistry for Biologists Paper-I/ Allied Physics Paper-I/	GE	4	58	2	3	20#	55#	75	4
	IIIA		Allied Paper I -Mathematical for Sciences - I		7	103	2	3	20	55	75	5
		CE23AP1 /PS23AP1	Allied Practical Chemistry / Physics	GE	3	45	-	-	-	ı	-	-
	IV	NME22B1/A1 NME23ES	Basic Tamil/Advanced Tamil** Introduction to Entrepreneurship	AEC	2	28 30	2	-	100	-	100	2
		TAM2302/ HIN2302/ FRE2302	Language T/H/F Paper - II	Language	6	88	2	3	25	75	100	3
	II	ENG2302	English Paper-II	English	5	73	2	3	25	75	100	3
		PL23C02	Core Paper II– Plant Diversity II	CC	6	88	2	3	25	75	100	5
		PL23CP1	Core Practical I (Core Paper I & II)	CC	3	45	-	3	25	75	100	4
	IIIA	CE23A02	IDC- Chemistry for Biologists II	GE	5	73	2	3	20#	55#	75	4
II		CE23AP1	IDC- Chemistry Practical for Biologists	GE	3	45	-	3	15*	35*	50	2
		NME23B2/A2	Basic Tamil/Advanced Tamil**	AEC	2	-	-	-	100	1	100	Grade **
		23PELS1	Professional English for Life Sciences	AEC	2	25	5	-	100	-	100	2
	IIIB	NM23GAW	Foundation Course –1 (General awareness)		Self study (Online)	100	-	100	Grade **			
III	I	TAM2303/ HIN 2303/ FRE2303	Language T/H/F Paper III	L	6	88	2	3	25	75	100	3
111	II	ENG2303	English Paper-III	E	5	73	2	3	25	75	100	3
	III	PL23C03	Core Paper III - Cell and Molecular Biology	CC	5	73	2	3	25	75	100	5
	III	PL23CP2	Core Practical - II (Core Paper III)	CC	2	30	-	-	-	-	-	-
		•			•			•	•		•	•

			Cl-91 D 1 C			1						
	III	PL23SCE1/	Skill Based Course Coursera -Climate Change and Health: From Science to Action	SEC	3	45/ 44	-/1	-	100	-	100	3
		CS23SBGP	GEN-AI		GD 5 50 5							
	III	AS23A01	Allied- II-Paper I- Zoology - Invertebrata and Chordata	GE	5 73 2		3	20	55	75	4	
Ш	III	TH23A09	Allied-II - Mathematics for Sciences- Paper-I	GE	7	103	2	3	25	75	100	5
	III	AS23AP1	Zoology Practical	GE	2	30	-	-	-	-	-	1
	IV	NM23DTG	Design Thinking	AEC	2	30	-	1	100	-	100	2
	IV	NM23UHR	Universal Human Values and Human Rights #	AECC	-	-	-	-	100	-	100	Gr.
	VI	16BONL1	Online Course 1	ACC	-	-	-	-	-	-	-	-
		16BONL2	Online Course 2									
	I	TAM2304/	Tamil Paper IV/	L	5	73	2	3	25	75	100	3
		HIN2304/	Hindi Paper IV/									
		FRE2304	French Paper IV									
	II	ENG2304	English Paper-IV	Е	6	88	2	3	25	75	100	3
IV	III	PL23C04	Plant Anatomy, Wood Technology and Embryology	CC	5	73	2	3	25	75	100	5
	III	PL23CP2	Core Practical II	CC	2	30	-	3	25	75	100	4
		PL23SCE1/	Climate Change and Health:									
III/IV	III	CS23SBGP	From Science to Action/ GEN-AI	SEC	3	45	1	-	100	-	100	3
	III	AS23A02/	General Principles in Zoology €/	GE	5/7	73/	2	3	20/	55/	75/	4/
		TH23A14	Mathematics for Sciences II			103			25	75	100	5
IV	III	AS23AP1	Zoology Practical*	GE	2	30	-	3	15	35	50	2
	IV	NM23EII	Entrepreneurship and Innovation (IgniteX)	AECC	2	30	1	-	100	-	100	2
	IV	NM23EVS	Environmental Studies	AECC	SS	-	-	-	100	-	100	Gr.
	V	COCOACT	Co- curricular activities	GC	-	-	-	-	100	-	100	1
I-IV	VI	COM15SER	Community Services 30 Hours	GC	-	-	-	-	-	-	-	-
I-V	VI	16BONL1	Online Course 1	ACC	-	-	-	-	-	-	-	-
		16BONL2	Online Course 2									

^{**}not considered for grand total and CGPA; Grade** - outside class hours.

L- Language

CC – Core Courses

GE – Generic Elective

SEC-Skill Enhancement Course

GC- General Courses

Gr. - Grade

E-English

CA – Continuous Assessment

ESE - End Semester Examination

AECC - Ability Enhancement Compulsory Course

SS- Self study

 $^{^{}m c}$ Allied theory CA & ESE will be evaluated for 25/75 converted into 20/55

^{*}Allied Practical CA & ESE will be evaluated for 25/75 converted into 15/35

CA Question Paper Pattern and distribution of marks Language and English

Section A 5 x 1 (No choice): 5 Marks

Section B 4 x 5 (4 out of 6) : 20 Marks (250 words) Section C 2 x 10 (2 out of 3) : 20 Marks (500 words)

Total: 45 Marks

CA Question from each unit comprising of

One question with a weightage of 2 Marks : $2 \times 3 = 6$

One question with a weightage of 5 Marks (Internal Choice at the same CLO level) :5 x 3 = 15 One question with a weightage of 8 Marks (Internal Choice at the same CLO level) :8 x 3 = 24

Total:45 Marks

End Semester Examination – Question Paper Pattern and Distribution of Marks Language and English

Section A 10 x 1 (10 out of 12): 10 Marks

Section B 5 x 5 (5 out of 7) : 25 Marks (250 words) Section A 4 x 10 (4 out of 6) : 40 Marks (600 - 700 words)

Total: 75 Marks

UG - Core and Allied courses:

ESE Question Paper Pattern: $5 \times 15 = 75$ Marks

Question from each unit comprising of

One question with a weightage of 2 Marks : 2 x 5=10

One question with a weightage of 5 Marks (Internal Choice at the same CLO level): $5 \times 5 = 25$ One question with a weightage of 8 Marks (Internal Choice at the same CLO level): $8 \times 5 = 40$

Continuous Internal Assessment Pattern Theory

I Year UG (23 Batch)

CIA Test : 5 marks (conducted for 45 marks after 50 days)

Model Exam : 7 marks (Conducted for 75 marks after 85 days (Each Unit 15 Marks))

Seminar/Assignment/Quiz: 5 marks Class Participation : 5 marks

Attendance : 3 marks

Total : 25 Marks

Practical

Lab Performance: 7 marks
Regularity : 5 marks
Model Exam : 10 marks
Attendance : 3 marks

Total: 25 marks

For allied courses with practical as 50 marks, the split-up is 15 marks as internal and 35 as external. Conversion will be carried out by CoE from 25 marks to 15 marks through ERP.

ESE Practical Pattern

The End Semester Examination will be conducted for a maximum of 75 marks respectively with a maximum 15 marks for the record and other submissions if any.

Part IV

Introduction to Entrepreneurship / Women Studies / Universal Human Values and Human Rights / Environmental Studies / Design Thinking/IGNITE X

Quiz : 50 marks

Assignment : 25 marks
Project / Case study : 25 marks

Total : 100 Marks

COURSE NUMBER	COURSE NAME	CATEGORY	L	T	P	CREDIT
PL23C01	Core Paper I - Microbiology & Plant diversity I	CORE	88	2	-	5

To study the characteristics and life cycle of Bacteria, Virus, Algae, Fungi and Lichens.

To study various plant diseases and their control measures.

To impart knowledge on Artificial Intelligence and its types.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand the cellular, biochemical, and physiological aspects of mircoorganisms and recognize the similarities and differences between microbial groups (bacteria, algae, fungi, protozoa, viruses)	K1
CLO2	Acquire knowledge about the diversity of Algae based on structure and reproduction	K2
CLO3	Know about the morphology, reproduction and economic importance of fungi and lichens	К3
CLO4	Identify the causes, symptoms and control measures of plant diseases	K4
CLO5	Apply the artificial intelligence to the biological science	K5

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	M	M	M
CLO2	S	S	S	M	M
CLO3	S	S	M	S	S
CLO4	S	M	S	M	M

S- Strong; M-Medium

Unit I: Microbiology

20 hrs

History and scope of microbiology. Structure and reproduction of viruses. Bacteria: Morphology, ultra structure, growth and reproduction. Bacterial classification (Bergey, 1923). Microbial techniques - methods of sterilization, culture media and pure culture techniques. Study of bacterial growth- growth curve. Gram staining.

Unit II: Algae 19 hrs

General characteristics of algae, Classification of algae (Fritsch, 1935). A detailed study on structure, reproduction and life cycle of *Anabaena*, *Chlamydomonas*, *Oedogonium*, *Ectocarpus* and *Polysiphonia* (developmental studies on sex organs not required). Economic importance of Algae.

Unit III: Fungi and Lichens

20 hrs

General characteristics of Fungi. Classification (Alexopoulos and Mims, 1972). Detailed study of morphology and reproduction of *Albugo, Saccharomyces, Penicillium, Puccinia, Polyporus* and *Aspergillus* (developmental studies on sex organs not required). Economic importance of Fungi.

Lichens: General characteristics, classification (Alexopoulos and Mims, 1979), reproduction and economic importance of Lichens. Detailed study of *Usnea*.

Unit- IV Plant Pathology

19 hrs

Classification of diseases— general symptoms. Penetration and disease development. Morphological and biochemical defense mechanisms in plants. A detailed study of the following plant diseases— Mosaic disease of tobacco, Citrus canker, Late blight of Potato, Red rot of sugarcane, Tikka disease of groundnut (causal organisms, symptoms, disease cycle and bio-control measures).

Unit-V 10 hrs

Artificial Intelligence-Definition; Types- Weak AI or Narrow AI, General AI and Super AI. Brief introduction to solutions to real-world problems by implementing the following AI processes/ techniques: 1-Machine Learning, 2- Deep Learning, 3- Natural Language Processing and 4- Robotics. AI to reintegrate biology: Biological knowledge discovery and assembly, Behavioural ecology, Genes to phenotypes, Prediction, evolution, and control of infectious diseases.

Text Books

S.	Authors	Year of	Title of the book	Publishers
No.		publication		
1.	Vashishta, B.R., Sinha,	2013	Algae	S Chand and
	A.E and Singh, V.P			Company Ltd., New
				Delhi
2.	Sharma O.P	2011	Algae	Tata Mc
			_	Graw-Hill

				Education
3.	Sharma O.P	2011	Fungi and	Tata Mc
			allied	Graw-Hill
			microorganis	Education
			ms	
4.	Purohit, S.S	2017	Microbiology-	Rastogi
			Fundamentals	Publications
			&Applications	,Meerut
			(7 th edition)	
5.	Pandey, B.P	2005	College Botany Vol I	S Chand &
	-			Company, New
				Delhi.
6.	Vashishta B.R./ Sinha	2016	Botany for	S. Chand and
	A.K. & Kumar Adarsh		degreestudents	CompanyLtd.,
			Fungi	New Delhi

Reference Books

S. No.	Authors	Year of publication	Title of the book	Publishers
1.	Alexopoulos, CJ,	2007	Introductory Mycology	John Wiley &
	Mims CW &			Sons, NewYork
	Blackwell M			
2.	Gangulee, HC. & Kar	2011	College Botany, Vol-II	New Central Book
	AK			Agency Pvt.
				Ltd.Calcutta.
3.	Mehrotra, RS &	2015	An introduction	New Age
	Aneja, KR		to Mycology,	International
			2nd Ed.,	Private Limited,
				New Delhi

Online course materials

- 1. https://www.researchgate.net/publication/354185787
- 2. https://www.edureka.co/blog/types-of-artificial-intelligence/
- 3. https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/#WhatisArtificialIntelligence

Pedagogy

E-content, Lecture, Power point presentation, Seminar, Assignment, Quiz, Group Discussion, Video / Animation

Course Designers

- 1. Dr. C. Krishnaveni
- 2. Dr. M. Kanchana
- 3. Dr. H. Rehana banu

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23C02	Core Paper II - Plant Diversity II	CORE	88	2	-	5

To study the classification, characteristics and life cycle of Bryophytes, Pteridophytes and Gymnosperms

To study the process of fossilization, geo-chronology and radio-carbon dating

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	Know the lifecycle of Bryophytes, Pteridophytes and Gymnosperms	K1
CLO2	Understand the characteristics of Bryophytes, Pteridophytes and Gymnosperms	K2
CLO3	Know the process of fossilization	K2
CLO4	Assess the evolutionary features of Bryophytes, Pteridophytes and Gymnosperms	К3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	M	M	M	M	M
CLO2	M	M	S	M	M
CLO3	S	S	M	M	S
CLO4	S	S	M	M	M

S- Strong; M-Medium

Syllabus

Unit I - Bryophytes

17hrs

General characteristics, Classification of Bryophytes (Reimers-1954),occurrence, distribution, common species, structure and reproduction of *Marchantia*, *Anthoceros* and *Funaria* (developmental studies on sex organs not required). Economic and ecological importance of Bryophytes. Evolution of Bryophytes

Unit II - Pteridophytes

17 hrs

General characteristics and Classification of Pteridophytes (Sporne, 1975). Stelar Evolution Homospory, heterospory and seed habit. Apogamy and apospory. Economic importance of Pteridophytes.

Unit III - Pteridophytes(Contd..)

17hrs

A detailed study of morphology, anatomy and reproduction of *Psilotum*, *Lycopodium*, *Equisetum Marsilea* (developmental studies on sex organs not required). Origin and evolution of

Pteridophytes.

Unit IV- Gymnosperms

17hrs

General characters, distribution and classification of Gymnosperms(Sporne, 1965). Detailed study of morphology, anatomy and reproduction of *Cycas*, *Pinus* and *Gnetum*(developmental studies on sex organs not required). Economic importance of Gymnosperms with special reference to oil, resin, timber, etc.

Unit V- Palaeobotany 20hrs

Fossils-fossilization process and Types of fossils - compression, impression, petrifaction, coal balls. Geological time scale. Radiocarbon dating. A detailed study of external and internal features and reproduction in *Rhynia*, *Lepidodendron*, *Lepidocarpon*, *Calamites* and *Williamsonia sewardiana*.

Text Books

I CAL DO	VILO			
S.No	Authors	Year of publication	Title of the book	Publishers
1.	Vasishta.B.R , Sinha &Adarsh Kumar	2012	Botany for Degree students –Bryophyta	S Chand And Company Ltd., New Delhi
2.	Sharma O.P	2011	Bryophyta	Tata Mc Graw-Hill Education
3.	Sharma O.P	2011	Pteridophyta	Tata Mc Graw-Hill Education
4.	Vasishta PC, Sinha AK &Anilkumar	2005	Botany for degree students,	S Chand And Company Ltd., New Delhi.
5.	Pandey, B.P	2003	College Botany Vol II	S Chand & Company, New Delhi

Reference Rooks

IXCICI CII	ICC DOORS			
S.No	Authors	Year of	Title of the book	Publishers
		publication		
1.	Arnold. C. A.	2013	An Introduction to	McGraw Hill Book
			Palaeobotany	Company,London
2.	Sporne, KR	1974	The Morphology of	Hutchinson & Co.,
			Gymnosperms	London.
3.	Sporne, KR	2015	The Morphology of	Hutchinson & Co.,
			Pteridophytes	London
4.	Steward.N.Wilso	2005	Palaeobotany and evolution	Cambridge University
	n& Rothwell, W.		of Plants	Press
	Gar			

Pedagogy

E-content, Lecture, Power point presentation, Seminar, Assignment, Quiz, Group Discussion, Video / Animation

Course Designers:

- 1.Dr.C. Krishnaveni
- 2.Dr.K.S.Tamilselvi
- 3.Dr.B. S.Chithra Devi
- 4.Dr.R. Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23CP1	Core Practical – I (Theory Paper - I & II Microbiology, Plant diversity I and Plant Diversity II)	CORE	-	-	90	4

- To observe, characterize and identify the different types of Algae, Fungi, Lichens, Bryophytes, Pteridophytes, Gymnosperms and fossilized plants.
- To identify and differentiate the various plant diseases and the causativeorganisms.
- To isolate microorganisms from soil and establish pure cultures
- To distinguish between Gram positive and Gram negative bacteria

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify the different forms of Algae, Fungi, Lichens, Bryophytes, Pteridophytes, Gymnosperms and fossilized plants.	K1
CLO2	Know the host – pathogen interactions	K2
CLO3	Prepare sterile microbial culture media and demonstrate pure culture techniques	К3
CLO4	Interpret the industrial impact of fermentation process	К3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	M	M	M
CLO2	S	S	M	M	M
CLO3	S	S	M	M	M
CLO4	S	S	M	M	M

S- Strong; M-Medium

Syllabus: Microbiology& plant Diversity I

Algae - Anabaena, Chlamydomonas, Oedogonium, Ectocarpus and Polysiphonia

Fungi - Albugo, Saccharomyces, Penicillium, Puccinia, Polyporus and Aspergillus

Lichens –Usnea

Plant pathology- Mosaic disease of tobacco, Citrus canker, Late blight of potato, Red rotof sugarcane, Tikka disease of groundnut.

45 Hrs

Microbial Techniques

Sterilization techniques.

Preparation of culture media: Nutrient broth and Nutrient Agar mediumPotato Dextrose Agar Medium Preparation of slants

Soil dilution, Plating techniques, Enumeration of bacteria and fungi. Microscopic observation of fungi-Lactoglycerol trypan blue staining, Microscopic observation of bacteria- Gram staining Fermentation using yeast

Plant Diversity II:

45 Hrs

(Bryophytes, Pteridophytes, Gymnosperms and Palaeobotany)

Study of the following types

Bryophyta- *Marchantia, Anthoceros and Funaria.* **Pteridophyta-***Psilotum, Lycopodium, Equisetum and Marsilea***Gymnosperms** *-Cycas, Pinus and Gnetum*

Palaeobotany -Rhynia, Lepidodendron, Lepidocarpan and Calamites

Course Designers:

- 1. Dr. C. Krishnaveni
- 2. Dr. M. Kanchana
- 3. Dr. K.S. Tamil Selvi
- 4. Dr. H. Rehana banu
- 5. Dr.E. Uma

COURSE	COURSENAME	Category	L	T	P	Credit
NUMBER						
23PELS1	PROFESSIONAL ENGLISH FOR LIFE	-	25	5		2
	SCIENCES					ļ

Objectives

- 1. To develop the language skills of students by offering adequate practice in professional contexts.
- 2. To enhance the lexical, grammatical and socio-linguistic and communicative competence of first year physical sciences students
- 3. To focus on developing students' knowledge of domain specific registers and the required language skills.
- 4. To develop strategic competence that will help in efficient communication
- 5. To sharpen students' critical thinking skills and make students culturally aware of the target situation.

Course outcome

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1	Recognize their own ability to improve their own competence in using the language	K1
CLO2	Use language for speaking with confidence in an intelligible and acceptable manner	K2
CLO3	Read independently unfamiliar texts with comprehension and understand the importance of reading for life	K3
CLO4	Understand the importance of writing in academic life	K3
CLO5	Write simple sentences without committing error of spelling or grammar	K3

(Outcomes based on guidelines in UGC LOCF – Generic Elective)

Mapping with ProgrammeOutcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	M	M
CLO2	S	S	S	M	M
CLO3	S	S	M	M	S
CLO4	S	S	M	M	M
CLO5	S	S	S	S	S

S- Strong; M-Medium

Syllabus

UNIT 1: Communication

5 hours

5 hours

Listening: Listening to audio text and answering question Listening toInstructions

Speaking: Pair work and small group work.

Reading: Comprehension passages –Differentiate between facts and opinion

Writing: Developing a story with pictures.

Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 2: Description

Listening: Listening to process description.-Drawing a flow chart.

Speaking: Role play (formal context)

Reading: Skimming/Scanning- Reading passages on products, equipment and gadgets.

Writing: Process Description –Compare and Contrast Paragraph-Sentence Definition and Extended definition- Free Writing.

Vocabulary: Register specific -Incorporated into the LSRW tasks.

UNIT 3: Negotiation Strategies

5 hours

Listening: Listening to interviews of specialists / Inventors in fields (Subject specific) **Speaking:** Brainstorming. (Mind mapping). Small group discussions (Subject-Specific)

Reading: Longer Reading text. **Writing:** Essay Writing (250 words)

Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 4: Presentation Skills

5 hours

Listening: Listening to lectures.

Speaking: Short talks.

Reading: Reading Comprehension passages

Writing: Writing Recommendations Interpreting Visuals inputs Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 5: Critical Thinking Skills

5 hours

Listening: Listening comprehension- Listening for information.

Speaking: Making presentations (with PPT- practice).

Reading: Comprehension passages –Note making.Comprehension: Motivational article on Professional Comprehension: Professional Ethics and Life Skills)

Competence, Professional Ethics and Life Skills)

Writing: Problem and Solution essay—Creative writing –Summary writing

Vocabulary: Register specific - Incorporated into the LSRW tasks

Textbooks

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	TamilNadu State Council for Higher Education (TANSCHE)	English for Life Sciences Semester 1		

Reference Books

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	Sreedharan, Josh	The Four Skills for Communication	Foundation books	2016
2	Pillai, G Radhakrishna, K Rajeevan, P Bhaskaran Nair	Spoken English for you	Emerald	1998
3	Pillai, G radhakrishna, K Rajeevan, P Bhaskaran Nair	Written English for you	Emerald	1998

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23C03	Core Paper - III Cell and Molecular Biology	Theory	73	2	-	5

- To study the structure and function of basic components of prokaryotic and eukaryotic cells, cell membranes and cell wall
- To study the structure and function of cell organelles
- To appreciate the cellular components underlying mitotic cell division.
- To understand the structure and function of DNA, RNA.
- To appreciate the central dogma of life, protein synthesis

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1.	Understand the structure and function of prokaryotic and	K1, K2, K3
	eukaryotic cells, cell membranes, cell wall and cell organelles	$\mathbf{K}_{1}, \mathbf{K}_{2}, \mathbf{K}_{3}$
CLO2.	Know the process of cell cycle and cell division	K1, K2, K3
CLO3.	Understand the structure and function of DNA, RNA	K1, K2, K3
CLO4.	Appreciate the concept of transcription and translation	K1, K2, K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	M	S
CLO2.	S	S	S	M	S
CLO3.	S	S	M	M	M
CLO4.	S	S	M	M	M

S- Strong; M-Medium

Syllabus

Unit-1 15 hrs

Prokaryotic and eukaryotic cell – structure: cell wall, plasma membrane and cytoplasm – structure and function. Cell organelles- Endoplasmic reticulum, Golgi body, Lysosomes, Vacuoles and Ribosomes, Mitochondria, chloroplast – structure and function.

Unit-II 14 hrs

Nucleus- structure and function; Cell cycle, Cell division- mitosis and meiosis. Chromosomes- Structure and function, Classification of chromosomes based on centromere. Special types of chromosomes- Lampbrush and Polytene chromosomes.

Unit-III 15 hrs

Nucleic acids: DNA as genetic material, Structure (Watson and Crick Model), forms and function of DNA. DNA replication- conservative and semi-conservative. Dispersive. Organization of DNA into chromosomes. Gene Mutation – types, causes.

Chromosomal aberrations

Unit-IV 14 hrs

RNA- structure, function & Types (tRNA, mRNA and rRNA). Central dogma of life Transcription— initiation, elongation and termination. Post transcriptional modifications. Genetic code- concept and properties, wobble hypothesis.

Unit-V 15 hrs

Translation – initiation, elongation and termination. Regulation of Gene expression-prokaryotes-operon concept- *lac* operon and *trp* operon. Post translational modifications.

Text Books

S.No.	Authors	Title of the book	Publishers	Edition & Year of publication
1.	Gupta P.K.	Cell and Molecular Biology	Rastogi	2 nd ed.
			publications.	2017
2.	Arumugam N &	Cell Biology, Molecular	Saras	1 st ed.
	Meyyan RP	Biology &	Publications.	2014
		Genetics- Vol I		
3.	Verma, P.S. and	Cytology	S.Chand& Co,	16 th ed.
	Agarwal, V.K		New Delhi	2018
4.	Shukla, R.S. and	Cytogenetics, evolution,	S. Chand &	1 st ed.
	Chandel, P.S.	Biostatistics and Plant	Co, New Delhi	2014
		Breeding		
5.	Verma P.S. and	Cell biology, Genetics,	S. Chand and	2 nd ed.
	Agarwal V.K.	Molecular Biology,	Company,	2022
		Evolution and Ecology.	New Delhi.	

Reference Books

1101010	iicc Dooks			
S.No.	Authors	Title of the book	Publishers	Edition &
				Year of
				publication
1.	Geoffrey M.	The Cell – A	Sinauer Associates, Inc.	6 th ed.
	Cooper and	Molecular Approach.	Publishers - Sunderland,	2013
	Robert E.		Massachusetts	
	Hausman,		U.S.A.	
2.	Clark, D. P., Paz	Molecular Biology	Netherlands: Elsevier	3 rd ed.
	dernik, N. J.		Science	2018
3.	Ajoy Paul	Cell and Molecular	Books and Allied Pvt	3 rd ed.
		Biology	Ltd., Kolkatta	2011
4.	De Robertis and	Cell and Molecular	Lippincott Williams and	8 th ed.
	De Robertis.	biology	Wilkins. UK	2017

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Course Designers

Dr. K.S. Tamil Selvi

Dr.E.Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23CP2	Core Practical II (Core Paper III and IV)	Practical	-	-	60	4

- To study the structural and functional aspects of various tissue systems and organs of dicots and monocots.
- To discuss the structure and functions of the meristematic, primary & complex tissues.
- To understand the structure of cells in relation to the functional aspects.
- Understand the cellular components underlying cell division.

Course learning outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CLO1	Recall the structure of the cell organelles through electron	
	micrographs.	K1
CLO2	Understand the structure and functions of the meristematic, primary and complex tissues.	K2
CLO3	Distinguish between normal and anomalous secondary growth.	K2
CLO4	Discuss the development of the endosperm and embryo.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	M	M	S
CLO2.	M	S	S	M	S
CLO3.	S	S	M	S	M
CLO4.	M	S	S	M	S

S- Strong; M-Medium

Syllabus

Paper III - Cell and Molecular Biology

(30hrs)

- Study of plant cell organelles through photomicrographs/permanent slides- Cell wall, plasma membrane (Fluid Mosaic model), nucleus, Mitochondria, Chloroplast, Endoplasmic reticulum, Golgi body, lysosomes, vacuoles and ribosomes. Lampbrush and polytene chromosomes.
- Study of Nucleic acids by micrographs

 DNA (Watson & Crick model), t-RNA (clover leaf model).
- Study of various stages of mitosis using cytological preparation of Onion root tips.
- Study of various stages of meiosis using cytological preparation of Flower bud-anther.

Paper IV – Plant Anatomy, Embryology and Wood technology: (30hrs)

Sectioning and Identification:

Plant Anatomy: Primary structure of Leaf, stem and root of dicot and monocot. Secondary thickening in dicot stem *-Polyalthia* and root–*Vigna*. Anomalous secondary thickening in the

stems - *Nyctanthus* and *Boerhaavia*; root - *Beta vulgaris*. Anomalous secondary thickening in the monocot stem-*Dracaena*.

Spotters: Book diagram/Permanent slides/Photographs

Meristems – shoot and root apex, Xylem – tracheids and vessels, Phloem. Annual rings, Wood preservatives, Defects in wood.

Embryology: T.S of anther, Types of ovules, Types of embryosac- uninucleate, binucleate and mature embryosac; Types of endosperms – nuclear, cellular and helobial. Embryo mounting (*Tridax*).

Course Designers

Dr.K.Gajalakshmi Dr. K.S.Tamil Selvi

Dr.E.Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23A01	Allied Paper – I: Fundamentals of Botany - I	Theory	73	2	-	4

- To study the characteristics and life cycle of algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms
- To gain knowledge of adaptations of plants to different environments
- To learn the horticulture techniques.

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
Nullibei		Level
CLO1	Know about characteristics and life cycle of algae, fungi, bryophytes, pteridophytes, gymnosperms	K1
CLO2	Know about characteristics and life cycle of angiosperms	K1
CLO3	Understand the concept of plant adaptations to different environments	K2
CLO4	Appraise the horticulture techniques.	K2

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	M	S	S
CLO2	S	S	M	M	M
CLO3	S	S	S	S	S
CLO4	S	S	S	M	M

S- Strong; M-Medium

Syllabus

Unit I 15 hrs

General characteristics and classification of Algae (Fritsch-1935,1948) - A study of distribution, structure, reproduction and life cycle of *Volvox*. *Economic importance of algae, General characteristics and classification of Fungi (Alexopoulos and Mims, 1979) -A study of distribution, structure, reproduction and life cycle of *Saccharomyces*. *Economic importance of Fungi. General characteristics, classification (Zahlbruckner,1907), reproduction and *Economic importance of Lichens.

Unit II 15 hrs

*General characteristics and Classification of Bryophyte (Engler,1892)- Structure, Reproduction and Life cycle of *Riccia*, *General characteristics and Classification of Pteridophytes (Reimer,1954) - Structure, Reproduction and Life cycle of *Lycopodium*, *General characteristics and Classification of Gymnosperms (Sporne-1965) - Structure, Reproduction and Life cycle of *Cycas*.

Unit III 15 hrs

General Characteristics and Classification of Angiosperms (Bentham and Hooker, 1883). *Morphology of stem, *root, *leaf, *inflorescence, *flower and *fruit. Study of the following families with their Economic importance – Annonaceae, Rutaceae, Rubiaceae, Lamiaceae, Amarantaceae and Poaceae.

Unit- IV 14 hrs

Ecology —*Plant adaptations. Xerophytes - *Nerium, Opuntia*. Mesophytes - *Helianthus, Hibiscus*. Hydrophytes-*Hydrilla, Nelumbium*. *Phytogeography —*Vegetations of Tamil Nadu:

*Evergreen, *scrub jungle, *Mangrove

Unit V 14 hrs

Horticulture: scope and importance, *propagation methods –*cutting, *layering and *grafting techniques), gardening and landscaping, *irrigation methods, manures, lawns, indoor plants, bonsai techniques.

Note: *Online Learning

Text Books

S.No.	Authors	Title of the book	Publishers	Edition & Year of publication
1.	Srivastava, H.N	Algae	Pradeep Publications, Delhi	10 th Ed. 2004
2.	Srivastava, H.N.	Fungi.	Pradeep Publications, Delhi	10 th Ed. 2004
3.	Srivastava, H.N.	Pteridophytes	Pradeep Publications, Delhi	10 th Ed. 2004
4.	Pandey, P.B	Plant Anatomy	S. Chand & Co, New Delhi	1 st Ed. 2001
5.	Singh, V. and Jain	Taxonomy of Angiosperms	Rastogi Publications, New Delhi	2 nd Ed. 1985
6.	Purohit S.S &Ranjan .R	Ecology, Environment and Pollution	Agrobios, India, Jodhpur	1 st Ed. 2003

Reference Books

S.No	Authors	Title of the book	Publishers	Edition &
				Year of
				publication
1.	Sharma O.P.	Plant Taxonomy	Tata McGraw Hill Comp,	2 nd Ed.
			New Delhi	2018
2.	Pandey, B. P.	Taxonomy of Angiosperms	S. Chand & Co, New Delhi	6 th Ed.
				2015

Pedagogy: Powerpoint, lecture, seminar, quiz and discussion.

Course Designers Dr. R. Sumathi

COURSE NUMBER	COURSE NAME	Category	L	T	P	Credit
NM23DTG	DESIGN THINKING	Theory	30	•	-	2

- 1. To expose the students to the concept of design thinking as a tool for innovation
- 2. To facilitate them to analyze the design process in decision making
- 3. To impart the design thinking skills

Course learning outcomes

On the successful completion of the course, students will be able to:

CLO Number	CLO Statement	Knowledge Level
CL01	Understand the concepts of Design thinking and its application in varied business settings	K1
CLO2	Describe the principles, basis of design thinking and its stages	K2
CLO3	Apply design thinking process in problem solving	К3
CLO4	Analyse the best practices of design thinking and impart them in business and individual day to day operations.	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	M	M	S	S
CLO2	M	S	S	M	M
CLO3	S	S	S	M	S
CLO4	S	S	S	S	S

S-Strong; M-Medium

UNIT -1 (6 Hours)

Design Thinking Overview: Introduction to Design Thinking and Design Research Strategies -Design Thinking Skills

UNIT-II (6 Hours)

Design Thinking Mindset- Principles of Design Thinking-Basis for design thinking- Design Thinking Hats - Design thinking team

UNIT-III (6 Hours)

Empathize - definition - Listen & Empathize with the Customers and/ or Users - Tools and Techniques

UNIT-IV (6 Hours)

Define -Definition -Defining the Problem -Tools and Techniques-Journey mapping and Ideate - definition - Ideation techniques

UNIT –V (6

Hours)

Prototype-Definition-Prototype Alternate Solutions-Test the Solutions-

Visualization-Story Telling - Cautions and Pitfalls - Best Practices

Text Books:

S. No.	Author(s)	Title of the Book	Publisher	Year of Publication
	Christian Mueller-	Handbook of Design Thinking	Amazon	
1	Roterberg	Tips & Tools for how to design	Kindle	2018
1.		thinking	Version	
2	Gavin Ambrose Paul	Design Thinking	AVA Publishing	2010
2	Harris	Design Timking	Switzerland	
2	Sambrant Srivastava and	A Tant Book of Design	Vayu Education	2022
3	Vijay Kumar	A Text Book of Design Thinking	Vayu Education of India	

Reference Books:

Sl.No.	Author(s)	Title of the Book	Publisher	Year of Publication
1	Maurício Vianna Ysmar Vianna Isabel K. Adler Brenda Lucena Beatriz Russo	Design Thinking-Business Innovation	MJVPress	2011
2	Moritz Gekeler	A practical guide to design thinking	Friedrich-Ebert-Stiftung	2019
3	J.Berengueres	1	UAE University College, Al Ain	2014

Blended Learning Links

UNIT	TOPICS	LINK
UNIT I	Introduction to Design Thinking	https://www.digimat.in/nptel/courses/video/109104109/L01.html
	Design Thinking skills	https://www.youtube.com/watch?v=b-9Id-Jt_PI
UNIT II	Principles& Basis of Design Thinking	https://youtu.be/6-NRiom8K9Y
UNITH	Design Thinking hats	https://www.youtube.com/watch?v=bc-BvFQDmmk
UNIT III	Empathize	http://acl.digimat.in/nptel/courses/video/109104109/L02.html http://acl.digimat.in/nptel/courses/video/109104109/L03.html https://youtu.be/ls2mqHs02B0
UNIT IV	Define	http://acl.digimat.in/nptel/courses/video/109104109/L04.html https://youtu.be/veixQsRnZZU https://youtu.be/6-bDSKZJEAM
	Ideate	http://acl.digimat.in/nptel/courses/video/109104109/L11.html http://acl.digimat.in/nptel/courses/video/109104109/L12.html http://acl.digimat.in/nptel/courses/video/109104109/L13.html
	Prototype	http://acl.digimat.in/nptel/courses/video/109104109/L15.html
UNIT V	Testing	http://acl.digimat.in/nptel/courses/video/109104109/L16.html http://acl.digimat.in/nptel/courses/video/109104109/L17.html http://acl.digimat.in/nptel/courses/video/109104109/L18.html http://acl.digimat.in/nptel/courses/video/109104109/L19.html

COURSE CODE	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23C04	Paper - IV – Plant Anatomy, Wood Technology and Embryology	Theory	73	2	•	5

- To know the anatomical structure of the Angiosperm plants
- To identify woods of commercial importance
- Methods of preserving and seasoning woods.
- To study the structure and development of embryo

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO		
Number		Level
CLO1	Know the fundamental structure of different plant tissue system	K 1
CLO2	Understand the development of different types of cells in plant system	K2
CLO3	Identify the quality of wood	К3
CLO4	Analyse the Anatomical variation between the plant species	K 4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	M	S	M
CLO2	S	M	S	M	M
CLO3	S	S	M	S	M
CLO4	S	S	M	M	M

S- Strong; M-Medium

Syllabus

Unit I (15 hrs)

Plant Anatomy: General account on Meristems. Shoot Apical Meristems, theories - apical cell theory, histogen, tunica and corpus. Root Apical Meristems- Korper and Kappe theory and Quiscent centre theory. Simple tissues- parenchyma, collenchyma and sclerenchyma.

Unit II (14 hrs)

Evolution of plant vascular system. Complex tissues – primary xylem and phloem, secondary xylem and phloem. Primary structure of dicot and monocot stem; dicot and monocot root. Anatomical structure of dicot and monocot leaf. Epidermal Tissues -Types of stomata and Secretory tissues.

Unit III: (15 hrs)

Formation of Secondary thickening in Dicot stem and Dicot root. Anomalous secondary thickening in Dicot stems - *Nyctanthus* and *Boerhaavia*; Dicot root of *Beta vulgaris*. Anomalous secondary thickening in monocot stem – *Dracaena**.

Unit IV: (14 hrs)

Wood Technology: Brief account on the formation and types of woods. Annual rings and Dendrochronology. Physical, Chemical, and Mechanical properties of wood. Defects in woods. Seasoning of woods, Methods of preservation of wood, and uses of wood.

Unit V: (15 hrs)

Embryology: Microsporogenesis and development of male gametophyte; Megasporogenesis and development of female gametophyte. Structure of 8 nucleate monosporic embryosac (*Polygonum*), Bisporic (*Allium*), tetrasporic (*Peperomia*). Fertilization and Double Fertilization. Types of endosperm. Development of monocot (*Luzulla*) and dicot (*Capsella*) embryo.

T	ext Bool	ks			
S.No Authors			Title of the book	Publishers	Edition &
					Year of
					publication
	1.	Pandey.BP.	Plant Anatomy	S.Chand and company.	6 th Ed. 2001
	2.	Tayal, MS	Plant Anatomy	Rastogi Publications	3 rd Ed. 2004
		Katherine	Anatomy of seed	John Wiley and Sons. U.S.A.	3 rd Ed. 2011
	3.	Esau	plants		
		Singh, V.,	Anatomy and	Rastogi Publications	3 rd Rev. Ed.
	4.	Pande, PC.	Embryology of		2018
		and Jain, DK	Angiosperms		

Mdpi AG

Wood Protection

and Preservation

Christian

Brischke

5.

1st Ed. 2020

R	Reference Books							
Ī	S.No	Authors	Title of the book	Publishers	Edition &			
					Year of publication			
	1.	D.F.Cutter,	Plant Anatomy, An	Blackwell Publishing.	1 st Ed. 2011			
		C.E.J Bottla,	applied Approach	Australia.				
		D.W.Stevenson,						
	2.	Franz F. P.	Principles of Wood	Springer Berlin,	1 st Ed. 2020			
		Kollmann,	Science and Technology	Heidelberg				
	Wilfred A. Côté		2-	_				
Ī	3.	Bhojwani, SS.,	The Embryology of	S Chand publishers	6 th Ed. 2020			
		Bhatnagar, SP	Angiosperms					
		and Dantu, PK						

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion

and Video/Animation

Links for blended learning

S.No.	Topic	Link for the topic
1.	Plant Anatomy	https://www.youtube.com/watch?v=03K82iPyWS0
		https://m.youtube.com/watch?v=lp4rIgsRdLc
		https://byjus.com/biology/ts-of-dracaena-stem/
2.	Wood Technology	https://www.youtube.com/watch?v=9zT3qaZJxIw
		https://www.youtube.com/watch?v=qHzIWl7CS8E
3.	Embryology	https://www.youtube.com/watch?v=dgFY7WUTASQ
		https://www.youtube.com/watch?v=bUjVHUf4d1I

Course Designer Dr.M.Kamalam

COURSE CODE	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23CP2	Core Practical II (Core Paper III and IV)	Practical	-	-	60	4

- To study the structural and functional aspects of various tissue systems and organs of dicots and monocots.
- To discuss the structure and functions of the meristematic, primary & complex tissues.
- To understand the structure of cells in relation to the functional aspects.
- Understand the cellular components underlying cell division.

Course learning outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CLO1	Recall the structure of the cell organelles through electron micrographs.	K1
CLO2	Understand the structure and functions of the meristematic, primary and complex tissues.	K2
CLO3	Distinguish between normal and anomalous secondary growth.	K2
CLO4	Discuss the development of the endosperm and embryo.	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	M	M	S
CLO2.	M	S	S	M	S
CLO3.	S	S	M	S	M
CLO4.	M	S	S	M	S

S- Strong; M-Medium

Syllabus

Paper III - Cell and Molecular Biology

(30hrs)

- Study of plant cell organelles through photomicrographs/permanent slides-Cell wall, plasma membrane (Fluid Mosaic model), nucleus, Mitochondria, Chloroplast, Endoplasmic reticulum, Golgi body, lysosomes, vacuoles and ribosomes. Lampbrush and polytene chromosomes.
- Study of Nucleic acids by micrographs DNA (Watson & Crick model), t-RNA (clover leaf model).
 - Study of various stages of mitosis using cytological preparation of Onion root tips.
 - Study of various stages of meiosis using cytological preparation of Flower bud-

anther.

Paper IV – Plant Anatomy, Wood technology and Embryology: (30hrs) Sectioning and Identification:

Plant Anatomy: Primary structure of Leaf, stem and root of dicot and monocot. Secondary thickening in dicot stem *-Polyalthia* and root–*Vigna*. Anomalous secondary thickening in the stems *- Nyctanthus* and *Boerhaavia*; root *- Beta vulgaris*. Anomalous secondary thickening in the monocot stem-*Dracaena*.

Spotters: Book diagram/Permanent slides/Photographs

Meristems – shoot and root apex, Xylem – tracheids and vessels, Phloem. Annual rings, Wood preservatives, Defects in wood.

Embryology: T.S of anther, Types of ovules, Types of embryosac- uninucleate, bi-nucleate and mature embryosac; Types of endosperms – nuclear, cellular and helobial. Embryo mounting (*Tridax*).

Course Designers

Dr.K.Gajalakshmi Dr. K.S.Tamil Selvi Dr.E.Uma

COURSE CODE	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23SCE1	Climate Change and Health: From Science to Action	Theory	45	-	-	3

S.No.	Topic of the Course	Link of the Course	Duration in hrs
1.	What is Climate Change?	https://www.coursera.org/learn/what-is-climate- change?specialization=our-responses-climate- change	6
2.	Tropical Forest Landscapes 101: Conservation & Restoration	https://www.coursera.org/learn/tropicalforests101	20
3.	Climate change and Indigenous People and local communities	https://www.coursera.org/learn/climate-change-indigenous-communities	14
4.	Our Earth's future	https://www.coursera.org/learn/earth-climate- change	8

2. What is Climate change?

- **Week 1 -** The Climate System and Climate Change 2 hours
- Week 2 Impacts of Climate Change 2 hours
- Week 3 Attitudes About Climate Change 3 hours

3. Tropical Forest Landscapes 101: Conservation & Restoration

- **Week 1** Why conserve and restore tropical forest landscapes? 3 hours
- Week 2 Ecology of tropical forest landscapes 3 hours
- Week 3 Social considerations for restoration and conservation − 3 hours
- Week 4 Conservation strategies 3 hours
- **Week 5** Restoration fundamentals 3 hours
- Week 6 Agroforestry and agroecology 3 hours
- Week 7 Funding conservation and restoration 4 hours

4. Climate change and Indigenous People and local communities

- Week 1 Climate change and Indigenous Peoples and local communities 1 hour
 - Introduction 2 hours
- Week 2 Climate change impacts on indigenous peoples and local communities 3 hours
- Week 3 Coping and adapting to climate change impacts 3 hours
- Week 4 Local Indicators of climate change impacts − 2 hours
- **Week 5** The role of IPLC in global climate governance − 3 hours

5. Our Earth's future

- Week 1 Climate Change Is Happening: See It -2 hours
- Week 2 It All Comes Down to the Ocean − 1 hour
- **Week 3** Climate Change is Happening: Model It -1 hour
- Week 4 Living with Climate Change 1 hour
- Week 5 Mitigate, Adapt, or Suffer? 2 hours

COURSE CODE	COURSE NAME	CATEGO RY	L	Т	P	CRED IT
PL23A02	Allied Paper II – Fundamentals of Botany- II	Theory	73	2		4

- To Gain Knowledge of the anatomy of plants
- To Gain Knowledge of the embryology of plants
- To study the metabolism of plants
- To know about the plant tissue culture techniques
- To Gain Knowledge of the microbial techniques

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Appreciate the anatomy of plants	K1
CLO2	Appreciate the embryology of plants	K2
CLO3	Appreciate the metabolism of plants	K3
CLO4	Understand the plant tissue culture techniques	K3
CLO5	Understand the microbial techniques	K2

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	M	S	M	M	M
CLO2	S	S	M	S	S
CLO3	M	M	M	M	M
CLO4	S	S	S	S	M
CLO5	S	M	M	M	M

S- Strong; M-Medium

Syllabus

Unit I 15 hrs

A brief account of meristems. Simple and complex permanent tissues Primary structure of dicot and monocot stem, root and leaf; Secondary structure of dicot stem and root.

Unit II 14 hrs

Microsporogenesis and development of male gametophyte, megasporogenesis and development of female gametophyte, structure of monosporic 8 – nucleate embryo sac (*Polygonum*). Types of endosperm, development of dicot and monocot embryos.

Unit III 15hrs

Plant Physiology- osmosis and diffusion. Passive and Active absorption of water, Photosynthesis - Photosynthetic apparatus, light and dark reaction. Transpiration.Plant movements, plant growth regulators –Auxin and Cytokinin.

Unit IV 14hrs

Tissue culture: Concept and Techniques- Sterilization, Medium preparation (MS medium),

Callus culture, organogenesis and regeneration. Hardening and field transfer.

Unit-V Microbial techniques

15 hrs

Methods of sterilization, Culture media- PDA, Serial dilution techniques. Pure culture techniques, Microbial growth and Growth curve. Typical Fermentation process.

Text books

S.No	Authors	Title of the book	Publishers	Edition& Year of publication
1.	Tayal, MS	Plant Anatomy	Rastogi Publications	3 rd Ed. 2004
2.	Singh, V., Pande,	Anatomy and	Rastogi Publications	3 rd Rev. Ed. 2018
	PC. and Jain, DK	Embryology of		
		Angiosperms		
3.	Jain.V.K	Fundamentals of plant	Chand & Company,	19 th Ed. 2017
		physiology	New Delhi	
4.	Kalyan Kumar, De.	An Introduction to Plant	New Central Book	1 st Ed. 2004
		Tissue Culture.	Agency Pvt.Ltd.	
			Howrah.	
5.	Kumaresan, V	Biotechnology	Saras Publication,	6 th Ed. 2017
			Nagercoil, TamilNadu	

Reference books

S.No	Authors	Title of the	Publishers	Edition& Year
		book		of publication
1.	Sharma, P.D	Microbiology	Rastogi Publications, Meerut.	3 rd Ed. 2010
2.	Michael J. Pelczar, E.C.S. Chan and Noel R Krieg.	Microbiology	Mc Graw Hill, New Delhi.	5 th Ed. 1988
3.	Mukherji.S. and	Plant Physiology	New Central Book Agency Pvt	1 st Ed. 2017
	A.K. Ghosh.		Ltd. Kolkatta.	

Pedagogy: Powerpoint, lecture, seminar, quiz and discussion.

Links for blended learning

L	Links for bichaca icarning				
S.No.	Unit	Topic	Link for the topic		
1.	Unit I	Anatomy	https://www.youtube.com/watch?v=SiZiTeQ-nHk		
			https://www.youtube.com/watch?v=LzFDghMoMRQ		
			https://www.youtube.com/watch?v=bbgwE-h84iE		
2.	Unit II	Embryology	https://www.youtube.com/watch?v=EgiET_piGpA		
			https://www.youtube.com/watch?v=DPcSTA3EUE4		
			https://www.youtube.com/watch?v=x26Fg8ltCGw		

3.	Unit III	Plant Physiology	https://www.youtube.com/watch?v=eeOcGX5qPp8
			https://www.youtube.com/watch?v=iP6PtdhgzSk
			https://www.youtube.com/watch?v=zt9ja6p8q6U
			https://www.youtube.com/watch?v=Py2O9rXENIg
			https://www.youtube.com/watch?v=DMWB9b58Rt4
4.	Unit IV	Tissue culture	https://www.youtube.com/watch?v=eMv_PMNPYMc
			https://www.youtube.com/watch?v=YodPROvjroU
5.	Unit V	Microbiology	https://www.youtube.com/watch?v=Bh-ytzY5uVY
			https://www.youtube.com/watch?v=OLz9JOrJepU
			https://www.youtube.com/watch?v=Ppe_bgnPFHU

COURSE CODE	COURSE NAME	CATEGORY	L	Т	P	CREDIT
PL23AP1	Allied Paper - Practical	Practical	-	-	60	2

- To observe and identify the different types of Algae, Fungi, Bryophytes, Pteridophytes and Gymnosperms.
- To obtain knowledge on anatomy of plants.

Course learning outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Differentiate the different forms of Algae, Fungi, Bryophytes, Pteridophytes and Gymnosperms.	K1
CLO2	Preparation of culture media.	K2
CLO3	Illustrate the internal structure of plant tissues.	К3
CLO4	Analyse the various pigments in plants	К3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	M	S	M	M	M
CLO2.	S	S	M	S	S
CLO3.	M	M	M	M	M
CLO4.	S	S	S	S	M

S- Strong; M-Medium

Syllabus

Semester- III 30 hrs

Specimens

Bryophytes - Habit of *Riccia*

Pteridophytes - Habit of *Lycopodium cernum*, *L. clavatum*, *L. phlegmaria* Gymnosperms - Habit of *Cycas*, Male cone, Female cone

Taxonomy - Study of plants belonging to the families (Annonaceae, Rutaceae, Rubiaceae, Lamiaceae, Amaranthaceae, and Poaceae) and their economic importance

Ecology- Habit of Nerium, Opuntia, Helianthus, Hibiscus, Hydrilla, Nelumbium

Slides

Algae - Volvox- Daughter colonies, Oogonia and Antheridia. Fungi - Saccharomyces-Single cell structure

Bryophytes - Riccia- Reproductive Structures-Antheridium, Archegonium and Sporangium

Pteridophytes - Lycopodium- L.S. of Cone

Gymnosperms - Cycas- T.S. of Corolloid root

Sectioning

Bryophytes - Riccia- T.S. of Thallus

Pteridophytes - Lycopodium- T.S.of Stem

Gymnosperms - Cycas - T.S. of Leaflet, T.S. of Rachis

Demonstration – cutting, layering, Grafting and bonsai

Semester- IV 30 hrs

Slides

Anatomy - Simple Tissues (Parenchyma, Collenchyma and Sclerenchyma), Complex Tissues (Xylem and Phloem)

Embryology- T.S. of Mature anther, 8- nucleated Embryosac, Mature Embryo

Sectioning

Anatomy- Primary structure of Dicot stem, root and leaf Primary structures of Monocot stem and root

Experiments

Physiology - Determination of osmotic potential by Plasmolytic method.

Separation of leaf pigment by Paper chromatography.

Microbiology- Preparation of Potato Dextrose Agar Medium, Serial dilution techniques and culture techniques –Pour plate, spread plate, streak plate & slant.

Demonstration Experiments

Physiology – hill reaction,

Tissue culture – sterilization, preparation of MS medium, inoculation, callus induction and organogenesis.

Spotters Microbiology – fermentor

Course Designers

Dr.C.Krishnaveni

Dr. R. Sumathi

Dr.E.Uma