

DEPARTMENT OF BOTANY

CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOMES- BASED CURRICULAR FRAMEWORK (LOCF)

(Semesters-I - V)

BACHELOR OF BOTANY (2022 – 2025 Batch)

College of Excellence, **Diff** 2023-4th Rank Autonomous and Affiliated to Bharathiar University Reaccredited with A⁺⁺ grade by NAAC, An ISO 9001:2015 Certified Institution Peelamedu, Coimbatore-641004

DEPARTMENT OF BOTANY CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOMES- BASED CURRICULAR FRAMEWORK (LOCF)

BACHELOR OF BOTANY (2022-2025 Batch) SYLLABUS & SCHEME OF EXAMINATION Applicable to students admitted during the academic year 2022 – 2023 onwards (I-V Sem)

Programme Learning Outcomes (PLO's)

Courses within the Botany curriculum will address goals and objectives at the appropriate level through measureable student learning outcomes developed by course instructors

PLO 1: Students will be able to remember, comprehend, apply, analyze and synthesize theore concepts in Botany, like evolution, biodiversity, structure and function, information flow, exchange and storage, pathways and transformations of energy and matter.

PLO 2: Students will develop the ability to apply and understand the defining characteristics of various processes of science and its uncertainty.

PLO 3: Students will also develop the ability to practice the skills of the scientific method. Engage in research projects and apply the quantitative skills to biological problems.

PLO 4: Students will be able to communicate and collaborate within and outside of biology and tap into the interdisciplinary nature of science.

PLO 5: Students will understand the relationship between science and society and to evaluate the impact of science as well as ethical implications of science in the society.

PROGRAMME SPECIFIC OBJECTIVES (PSOs) At the end of the programme the student will

PSO1: Obtain strong foundation in classical botany, interdisciplinary subjects such as Bioinformatics, Biostatistics, and advance topics in Cell and Molecular biology, Biochemistry and Plant Biotechnology.

PSO2: Build capacity in Horticulture and production of cut flowers from the skill based courses offered.

PSO3: Carry out individual short term internship and project worktoacquire knowledge on research using basic and advanced instruments/equipments.

PSO4: Find opportunities for higher studies in top ranking universities.

PSO5: Gain career in teaching/research in Botany.

College of Excellence, **Diff** 2023-4th Rank Autonomous and Affiliated to Bharathiar University Reaccredited with A⁺⁺ grade by NAAC, An ISO 9001:2015 Certified Institution Peelamedu, Coimbatore-641004

DEPARTMENT OF BOTANY CHOICE BASED CREDIT SYSTEM (CBCS) & LEARNING OUTCOMES- BASED CURRICULAR FRAMEWORK (LOCF)

BACHELOR OF BOTANY (2022-2025 Batch) SYLLABUS & SCHEME OF EXAMINATION Applicable to students admitted during the academic year 2022 – 2023 onwards (I-V Sem)

		Аррисал	te to students admitted during the acad	ichnic ycar	2022 -	- 202.	5 011	wai us		/m/)		
SEM	Part	Subject Code	Title of the Paper	Title of the Paper		ttion <u>veek</u> hours ial		n of tion	Exan	its		
					Instruc hours/w	Contact]	Tutor	Duratio Examina	CA	ESE	TOTAL	Credi
I	Ι	TAM2201/ HIN2201/ FRE2201	Language T/H/F Paper I	Language	6	86	4	3	50	50	100	3
	II	ENG2201	English Paper-I	English	6	86	4	3	50	50	100	3
		PL22C01	Core Paper I- Microbiology & Plant diversity I	CC	6	86	4	3	50	50	100	5
	IIIA	PL21CP1	Core Practical – I	CC	3	45	-	-	-	-	-	-
		CE22A01/ PS22A01/	Allied Chemistry for Biologists Paper- I/ Allied Physics Paper–I/	GE	4	56	4	3	50	50	100	4
		TH22A09	Allied Paper I -Mathematical for Sciences - I		7	101	4	3	50	50	100	5
		CE21AP1 /PS21AP1	Allied Practical Chemistry / Physics	GE	3	45	-	-	-	-	-	-
	IV	NME22B1/A1 NME21ES	Basic Tamil/Advanced Tamil** Introduction to Entrepreneurship	AEC	2	-	-	3	50/ 50	50/ 50	100	2
Π	Ι	TAM2202/HIN 2202/FRE2202	Language T/H/F Paper - II	Language	6	86	4	3	50	50	100	3
	II	ENG2102	English Paper-II	English	5	71	4	3	50	50	100	3
	IIIA	PL22C02	Core Paper II – Plant diversity II(Bryophytes, Pteridophytes, Gymnosperms, and Palaeobotany)	CC	5	71	4	3	50	50	100	5
		PL21CP1	Core Practical I (Core Paper I & II)	CC	3	45	-	3	50°	50°	100	4

		CE22A02/	Allied Chemistry for Biologists Paper-	GE	5	71	4	3	50	50	100	4
		PS22A02/ TH22A14	II / Physics Paper –II / Allied Paper II – Mathematics for Sciences II									
		11122/11			8	116	4	3	50	50	100	5
	IIIA	CE21AP1/ PS21AP1	Allied Chemistry Practical/Allied Physics Practical	GE	3	45	-	3	25	50	100	2
	IV	OPS1808	Open course-self study online courses			-	<u> </u>	-	-	-	-	-
		NME22B2/A2	Basic Tamil/Advanced Tamil**	AEC		-		-	50	-	50	-
	IV	21PELS1	Professional English for Life Sciences	AEC	3	45	3	2	50	50	100	2
	IIIB	NM12GAW	Foundation Course –1 (General awareness)		Self	study (C	Onlin	e)	100	-	100	Grade
ш	Ι	TAM2203/HIN 2203/FRE2203	Language T/H/F Paper III	Languag e	6	88	2	3	50	50	100	3
	Π	ENG2203	English Paper-III	English	5	73	2	3	50	50	100	3
	IIIA	PL22C03	Paper - III Cell and Molecular Biology	CC	5	73	2	3	50	50	100	5
	IIIA	PL22CP2	Core Practical - II (Core Paper III)	CC	2	30	-	-	-	-	-	-
	III	PL22SB01/	Skill Based Subject I- Horticulture / Coursera -Climate Change and Health:	SEC	3	41	4	2	100	-	100	
		PL21SBCE	From Science to Action	SEC	3	45	-	-	-	-	-	3
	IIIA	AS22A01/ PS22A01/ PL22A01	Allied- II-Paper I- Zoology / Physics/ Botany	GE	5	73	2	3	30	45	75	3
	IIIA	TH22A09	Allied-II-Paper-I-Maths	GE	7	103	2	3	50	50	100	5
	IIIA	AS22AP1/PS22 AP1	Allied Practical	GE	2	30	-	-	-	-	-	-
	III B	NM22EVS	Foundation Course-II (Environmental Studies)	AEC	Self stud	-	-	-	100	-	100	Grade **
	III B	NM22UHR	Foundation Course-III (Universal HumanValues and Human Rights)	AEC	2	28	2	-	100	-	100	2
IV	Ι	TAM2204/ HIN2204/ FRE2204	Language T/H/F Paper IV	Langua ge	5	73	2	3	50	50	100	3
	II	ENG2204	English Paper-IV	English	6	88	2	3	50	50	100	3
	IIIA	PL22C04	Core Paper-IV- Plant AnatomyWood Technology and Embryology	CC	5	73	2	3	50	50	100	5
	IIIA	PL22CP2	Core Practical II (CorePaper III & IV)	CC	2	30	-	3	50°	50°	100	4
III/I V	III	PL22SB02/	Skill Based Subject II- Horticulture	SEC	3	41	4	-	100	_	100	3
v		PL21SBCE	Coursera - Climate Changeand Health: From Science to Action	SEC	3	45	-	-	100		100	
IV	IIIA	AS22A02	Allied- II-Paper I- Zoology	GE	5	73	2	3	30#	45#	75	4
	IIIA	TH22A14	Allied-II-Paper-II-Allied Mathematics for Sciences II	GE	7	103	2	3	50	50	100	5
	IIIA	AS21AP1	Allied Practical	GE	2	30	-	3	25*	25*	50	2
	IIIB	NM22DTG	Design Thinking	Finishin o	2	30	-	-	100	-	100	2
				School Part A								

	III	COCOACT	NSS / NCC /YRC/Sports	-	-	-	-	-	-	-	100	1
		JOB1753	Job Oriented Course	JOC		After 12.30 pm	-	Gra de* *	-	-	-	-
	III	PL22C05	Core Paper V – Plant Taxonomyand Economic Botany	CC	4	58	2	3	50	50	100	4
	III	PL22C06	Core Paper VI- Genetics, Plant breeding and Biostatistics	CC	4	58	2	3	50	50	100	4
v	III	PL21E01/ PL21E02/ PL21E03	Elective I Dietetics, Food Processing and Preservation/ Bioinoculants- Paper I/ Environmental Biotechnology	DSE	5	73	2	3	50	50	100	5
	III	PL22CP3	Core Practical III	CC	3+3+ 2	120	-	3	50 °	50°	100	4
V/VI	III	PL22SBCE/ PL21SBP1	Skill Based Course Coursera Course – ClimateChange and Health: From Science to Action / SBS-Horticulture Practical	SEC	3	45/41	-/4	2	10 0	-	100	3
	III	PL22AC1/ PL22AC2	Advanced learners Course- # Food Microbiology/ Nutrition Science	ACC	-	-	-	3	25	75	100	5\$
v	III	PL21PROJ	Project &Viva voce	DSE	4	60	-	Viv a	50	50	100	5
	IV	NM21CS1	Cyber Security I	AECC	2	30	-	-	10 0	-	100	Gr.
	III	PL22COM	Comprehensive Examination	GC				1		100	100	Gr.
	IV	PL22INST	Fieldwork/Internship (15 days)	DSE	-	-	-	-	10 0	-	100	2
	VI	COM15SER	Community Services (30 hrs)	GC	-	-	-	-	-	-	-	Gr.
I-V	VI	16BONL1 16BONL2	Online Course Online Course	ACC	-	-	-	-	-	-	-	-

CC – Core Courses

CA – Continuous Assessment

DSE – Discipline Specific Elective

SEC – Skill Enhancement Course

AECC - Ability Enhancement Compulsory Course

Gr.-Grade

** Outside regular class hours

[#]Allied theory CA & ESE will be evaluated for 50/100 converted into 30/45

*Allied Practical CA & ESE will be evaluated for 50/100 converted into 25/25

*Core Practical CA & ESE will be evaluated for 100 converted into 50

^{\$} Credits applicable to candidates who take up Advanced level Course examination

GE – Generic Elective AEC – Ability Enhancing Course ESE - End Semester Examination ACC-Additional Credit Course GC- General Courses # - Self Study

<u>CIA PATTERN</u>

1. Theory – 50:50 = 100 Marks

INTERNAL COMPONENT	50 Marks
CIA I	10 (Conducted for60 marks after 50 days)
MODEL EVAM	20(Conducted for after 85 days 100 marks (Each Unit 20
MODEL EXAM	Marks))
SEMINAR/ASSIGNMENT/QUIZ	10
CLASS PARTICIPATION	7
ATTENDENCE	3
TOTAL	50 Marks + ESE 50 Marks (Conducted for 100 Marks)

CIA Pattern

Question from each unit comprising of

One question with a weightage of 2 Marks		$: 2 \ge 3 = 6$
One question with a weightage of 6 Marks (Internal Choice at the same		
CLO level)		: 6 x 3 =15
One question with a weightage of 12 Marks (Internal Choice at the same		
CLO level)		: 12x3=36
	Total	: 60 Marks
ESE Ouestion Paper Pattern: 5 x 20 = 100 Marks		
Question from each unit comprising of		
One question with a weightage of 2 Marks		: 2 x 5 = 10
One question with a weightage of 6 Marks (Internal Choice at the same		
CLO level)		: 6 x 5 = 30

One question with a weightage of 12 Marks (Internal Choice at the same CLO level) : 12x5=60Total : 100 Marks

2. Practical - 50 : 50 = 100 Marks

Internal Component (Practical)	50 marks
Lab Performance (Practical + Interaction) (12+12)	24
Regularity in record submission	8
Model Examination	15
Attendance	3
Total	50

3. Part IV Value education / Environmental Studies/Design Thinking

INTERNAL COMPONENT	100 Marks
Quiz	50 Marks
Assignment	25 Marks
Project/Case study	25 Marks
Total	100 Marks

4. ALC 25/75 pattern:

Internal Component (Theory)	25 Marks
CIA	10
Model exam	15
Total	25 marks

<u>ALC</u>

Section A (Paragraph answer) (4 out of 6) 4 x 4 Section B (Essay type) 1 out of 2

Advance Learner Courses (ALC)

Section A : 5 questions out of 8 - open choice 5x5 Section B : 5 questions out of 8-open choice 5x10 : 25 marks : 50 marks

: 16 Marks

: 9 Marks Total: 25 Marks

Total : 75 marks

5. Project: 50 / 50 = 100 Marks

Component	100 Marks
Internal	
Review I	15
Review II	15
Review III	20
Total	50 marks
ESE	
Evaluation of Project	30
Viva – voce examination	20
Total	50 marks
Total	100 Marks

6. Skill Based Course:

INTERNAL COMPONENT	100 Marks
Test 1 (Theory / Practical)	30 marks (Conducted for 50 marks and
	converted to 30 marks)

Test 2 (Theory / Practical / Project)	50 marks				
Lab performance	10 marks				
Regularity	10 marks				
Total	100 Marks				

Students securing very low marks in internal assessment, only ESE mark will beconsider as passing criteria from third attempt onwards

7. Cyber Security

INTERNAL COMPONENT	100 Marks
Quiz	60 Marks
Case Study	20 Marks
Poster	20 Marks
Total	100 Marks

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	М	М	М	М
CLO2	S	S	S	М	М
CLO3	S	S	М	S	S
CLO4	S	М	S	М	М

Course 1-PL22C01

Course 2-PL22C02

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	М	М	М	М	М
CLO2	М	М	S	М	М
CLO3	S	S	М	М	S
CLO4	S	S	М	М	М

Course 3-PL22CP1

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CL01	S	М	М	М	М
CLO2	S	S	М	М	М
CLO3	S	S	М	М	М
CLO4	S	S	М	М	М

Course 4-PL22C03

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5		
CLO1.	S	S	S	S	S		
CLO2.	S	S	S	М	S		
CLO3.	М	S	М	S	S		
CLO4.	М	М	М	М	М		

Course 5-PL22SB01

Course 6-PL22A01

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	М	М	S	S
CLO2	S	S	М	М	М
CLO3	S	S	S	S	S

Course7: PL22CO4

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	М	S	М
CLO2.	S	М	S	М	М
CLO3.	S	S	М	S	М
CLO4.	S	S	М	М	М
		~			

Course 8-PL22CP2

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	М	М	S
CLO2.	М	S	S	М	S
CLO3.	S	S	М	S	М
CLO4.	М	S	S	М	S

Course 9:PL22SB02

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	S	М
CLO2.	S	М	S	S	М
CLO3.	М	S	S	М	S
CLO4.	S	S	S	S	S

Course 10: PL21SBCE

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5		
CLO1	М	S	М	М	М		
CLO2	S	S	М	S	S		
CLO3	М	М	М	М	М		
CLO4	S	S	S	S	М		
CLO5	S	М	М	М	М		

Course 11: PL22A02

Course 12: PL22AP1

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CL01.	М	S	М	М	М
CLO2.	S	S	М	S	S
CLO3.	М	М	М	М	М
CLO4.	S	S	S	S	М

Course 13: PL22C05

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	М	S	М	S	М
CLO2.	S	М	S	S	М
CLO3.	М	S	М	М	S
CLO4.	М	S	М	S	S

Course 14: PL22C06

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М

Course 15: PL21E01

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CL01.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М
CL05.	S	S	S	S	S

Course 16: PL21E02

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М
CLO5.	S	S	S	S	S

Course 17: PL21E03

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2 .	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М
CLO5.	S	S	S	S	S
		<u> </u>	0 DI 44		•

Course 18: PL22CP3

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	М	S	М	S	S
CLO2	S	М	S	S	М
CLO3	S	S	М	М	S
CLO4	М	S	S	М	S
		10	DIAA	01	•

Course 19: PL22AC1

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5

CL03. CL04. CL05.	S S	S S	M M	M M	S M
CL03. CL04.	S	S	М	М	S
CLO3.					
	S	S	М	М	S
CLO2.	S	S	М	М	S
CLO1.	S	S	М	S	S

Course 20: PL22AC2

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	L	М	S
CLO2.	S	S	L	М	S
CLO3.	S	S	L	М	S
CLO4.	S	S	L	М	S
CL05.	S	S	L	М	М

Course 21: PL21PROJ

Course 22: PL22SBCEA Course 23:PL21SBP1

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	Μ	М	Μ
CLO2	S	S	М	М	Μ
CLO3	S	S	М	М	S
CLO4	S	S	М	М	S

	T	I	P	CREDIT
PL22C01Core Paper I - Microbiology & Plant diversity ICORE86	4		-	5

Preamble

To study the characteristics and life cycle of Bacteria, Virus, Algae, Fungi and Lichens.

To study various plant diseases and their control measures.

To impart knowledge on Artificial Intelligence and its types.

Course Learning Outcomes

CLO Number	CLO Statement	Knowledge Level
CLO1	Classify the microbes and understand the characteristics of Bacteria and viruses	K1
CLO2	Acquire knowledge about the diversity of Algae based on structure and reproduction	K2
CLO3	Know about the morphology, reproduction and economic importance of fungi and lichens	K2
CLO4	Identify the causes, symptoms and control measures of plant diseases	K2

On the successful completion of the course, students will be able to

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	М	М	М	М
CLO2	S	S	S	М	М
CLO3	S	S	М	S	S
CLO4	S	М	S	М	М

S- Strong; M-Medium

Syllabus

Unit I : Microbiology

19 hrs

History and scope of microbiology. Structure and reproduction of viruses. Bacteria: Morphology, ultra structure, growth and reproduction. Bacterial classification (Bergey, 1923). Microbial techniques - methods of sterilization, culture media and pure culture techniques. Study of bacterial growth- growth curve. Gram staining.

Unit III: Fungi and Lichens

General characteristics of Fungi. Classification (Alexopoulos and Mims, 1972). Detailed study of morphology and reproduction of *Albugo, Saccharomyces, Penicillium, Puccinia, Polyporus* and *Aspergillus* (developmental studies on sex organs not required). Economic importance of Fungi.

Lichens: General characteristics, classification (Alexopoulos and Mims, 1979), reproduction and economic importance of Lichens. Detailed study of *Usnea*.

Unit- IV Plant Pathology

Classification of diseases– general symptoms. Penetration and disease development. Morphological and biochemical defense mechanisms in plants. A detailed study of the following plant diseases – Mosaic disease of tobacco, Citrus canker, Late blight of Potato, Red rot of sugarcane, Tikka disease of groundnut (causal organisms, symptoms, disease cycle and bio-control measures).

Unit-V

Artificial Intelligence-Definition; Types- Weak AI or Narrow AI, General AI and Super AI. Brief introduction to solutions to real-world problems by implementing the following AI processes/ techniques: 1-Machine Learning, 2- Deep Learning, 3- Natural Language Processing and 4- Robotics. AI to reintegrate biology: Biological knowledge discovery and assembly, Behavioural ecology, Genes to phenotypes, Prediction, evolution, and control of infectious diseases.

Text Books

S.	Authors	Year of	Title of the book	Publishers
No.		publication		
1.	Vashishta, B.R., Sinha,	2013	Algae	S Chand and Company Ltd.,
	A.E and Singh, V.P			New Delhi
2.	Sharma O.P	2011	Algae	Tata Mc Graw-Hill
				Education
3.	Sharma O.P	2011	Fungi and allied	Tata Mc Graw-Hill
			microorganisms	Education
4.	Purohit, S.S	2017	Microbiology-	Rastogi Publications,
			Fundamentals	Meerut

Unit II: Algae

General characteristics of algae, Classification of algae (Fritsch, 1935). A detailed study on structure, reproduction and life cycle of *Anabaena*, *Chlamydomonas*, *Oedogonium*, *Ectocarpus* and *Polysiphonia* (developmental studies on sex organs not required). Economic importance of Algae.

19 hrs

19 hrs

10 hrs

			&Applications (7 th edition)	
5.	Pandey, B.P	2005	College Botany Vol I	S Chand & Company, New
				Delhi.
6.	Vashishta B.R./ Sinha	2016	Botany for degree	S. Chand and Company
	A.K. & Kumar Adarsh		students Fungi	Ltd., New Delhi

Reference Books

S.	Authors	Year of	Title of the book	Publishers
No.		publication		
1.	Alexopoulos, CJ,	2007	Introductory Mycology	John Wiley & Sons, New
	Mims CW &			York
	Blackwell M			
2.	Gangulee, HC. & Kar	2011	College Botany, Vol-II	New Central Book
	AK			Agency Pvt. Ltd.Calcutta.
3.	Mehrotra, RS &	2015	An introduction to	New Age International
	Aneja, KR		Mycology, 2nd Ed.,	Private Limited, New
				Delhi

Online course materials

- 1. https://www.researchgate.net/publication/354185787
- 2. https://www.edureka.co/blog/types-of-artificial-intelligence/
- 3. <u>https://www.mygreatlearning.com/blog/what-is-artificial-intelligence/#WhatisArtificialIntelligence</u>

Pedagogy

E-content, Lecture, Power point presentation, Seminar, Assignment, Quiz, Group Discussion, Video / Animation

Course Designers

- 1. Dr. C. Krishnaveni
- 2. Dr. M. Kanchana
- 3. Dr. H. Rehana banu

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22C02	Core Paper II - Plant Diversity II (Bryophytes,Pteridophytes, Gymnosperms and Palaeobotany)	CORE	71	4	-	5

Preamble

To study the classification, characteristics and life cycle of Bryophytes, Pteridophytes and Gymnosperms

To study the process of fossilization, geo-chronology and radio-carbon dating

Course Outcomes

On the successful completion of the course, students will be able to

CLO Number	CO Statement	Knowledge Level
CLO1	Know the lifecycle of Bryophytes, Pteridophytes and Gymnosperms	K1
CLO2	Understand the characteristics of Bryophytes, Pteridophytes and Gymnosperms	K2
CLO3	Know the process of fossilization	K2
CLO4	Assess the evolutionary features of Bryophytes, Pteridophytes and Gymnosperms	К3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	М	М	М	М	М
CLO2	М	М	S	М	М
CLO3	S	S	М	М	S
CLO4	S	S	М	М	М

S- Strong; M-Medium

Syllabus Unit I - Bryophytes

14hrs

General characteristics, Classification of Bryophytes (Reimers-1954),occurrence, distribution, common species, structure and reproduction of *Marchantia*, *Anthoceros* and *Funaria* (developmental studies on sex organs not required).Economic and ecological importance of Bryophytes.

Unit II - Pteridophytes

General characteristics and Classification of Pteridophytes (Sporne, 1975). Stelar Evolution Homospory, heterospory and seed habit. Economic importance of Pteridophytes.

Unit III – Pteridophytes (Contd..)

A detailed study of morphology, anatomy and reproduction of Psilotum, Lycopodium, Equisetum Marsilea (developmental studies on sex organs not required).

Unit IV- Gymnosperms

General characters, distribution and classification of Gymnosperms(Sporne, 1965). Detailed study of morphology, anatomy and reproduction of Cycas, Pinus and Gnetum (developmental studies on sex organs not required). Economic importance of Gymnosperms.

Unit V- Palaeobotany

Fossils-fossilization process and Types of fossils - compression, impression, petrifaction, coal balls. Geological time scale. A detailed study of external and internal features and reproduction in Rhynia, Lepidodendron, Lepidocarpan, and Calamites.

Text Bo	ooks			
S.No	Authors	Year of publication	Title of the book	Publishers
1.	Vasishta.B.R,	2012	Botany for Degree students	S Chand And
	Sinha &Adarsh		–Bryophyta	Company Ltd., New
	Kumar			Delhi
2.	Sharma O.P	2011	Bryophyta	Tata Mc Graw-Hill
				Education
3.	Sharma O.P	2011	Pteridophyta	Tata Mc Graw-Hill
				Education
4.	Vasishta PC,	2005	Botany for degree students,	S Chand And
	Sinha AK			Company Ltd., New
	&Anilkumar			Delhi.
5.	Pandey, B.P	2003	College Botany Vol II	S Chand & Company,
				New Delhi
Referen	ice Books	-		_
S.No	Authors	Year of	Title of the book	Publishers
		publication		
1.	Arnold. C. A.	2013	An Introduction to	McGraw Hill Book
			Palaeobotany	Company,London
2.	Sporne, KR	1974	The Morphology of	Hutchinson & Co.,
			Gymnosperms	London.

14hrs

14hrs

15hrs

3.	Sporne, KR	2015	The Morphology of	Hutchinson & Co.,
			Pteridophytes	London
4.	Steward.N.Wilso	2005	Palaeobotany and evolution	Cambridge University
	n & Rothwell,		of Plants	Press
	W. Gar			

Pedagogy

E-content, Lecture, Power point presentation, Seminar, Assignment, Quiz, Group Discussion, Video / Animation

Course Designers:

1.Dr.C. Krishnaveni 2.Dr.K.S.Tamilselvi 3.Dr.B. S.Chithra Devi 4.Dr.R. Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT	
PL21CP1	Core Practical – I (Theory Paper - I & II – Microbiology, Plant diversity I and Plant Diversity II)	CORE	-	-	90	4	
Preamble							
•	To observe, characterize and identify the different types of Algae, Fungi, Lichens, Bryophytes, Pteridophytes, Gymnosperms and fossilized plants. To identify and differentiate the various plant diseases and the causative organisms.						
•	To isolate microorganisms from soil and establish pure cultures						
•	To distinguish between Gram positive ar	nd Gram negative	bact	eria			

Course Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Identify the different forms of Algae, Fungi, Lichens,	K1
	Bryophytes, Pteridophytes, Gymnosperms and	
	fossilized plants.	
CLO2	Know the host – pathogen interactions	K2
CLO3	Prepare sterile microbial culture media and demonstrate	K3
	pure culture techniques	
CLO4	Interpret the industrial impact of fermentation process	K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CL01	S	М	М	М	М
CLO2	S	S	М	М	М
CLO3	S	S	М	М	М
CLO4	S	S	М	М	М

S- Strong; M-Medium

Syllabus:Microbiology& plant Diversity I45 Hrs

Algae - Anabaena, Chlamydomonas, Oedogonium, Ectocarpus and Polysiphonia

Fungi - Albugo, Saccharomyces, Penicillium, Puccinia, Polyporus and Aspergillus

Lichens -Usnea

Plant pathology- Mosaic disease of tobacco, Citrus canker, Late blight of potato, Red rot of sugarcane, Tikka disease of groundnut.

Microbial Techniques

Sterilization techniques. Preparation of culture media: Nutrient broth and Nutrient Agar medium Potato Dextrose Agar Medium Preparation of slants Soil dilution, Plating techniques, Enumeration of bacteria and fungi. Microscopic observation of fungi-Lactoglycerol trypan blue staining, Microscopic observation of bacteria- Gram staining Fermentation using yeast

Plant Diversity II: 45 Hrs (Bryophytes, Pteridophytes, Gymnosperms and Palaeobotany)

Study of the following types

Bryophyta- Marchantia, Anthoceros and Funaria. Pteridophyta-Psilotum, Lycopodium, Equisetum and Marsilea Gymnosperms -Cycas, Pinus and Gnetum Palaeobotany -Rhynia, Lepidodendron, Lepidocarpan and Calamites

Course Designers:

- 1. Dr. C. Krishnaveni
- 2. Dr. M. Kanchana
- 3. Dr. K.S. Tamil Selvi
- 4. Dr. H. Rehana banu
- 5. Dr.E. Uma

COURSE	COURSENAME	Category	L	Т	Р	Credit
NUMBER	SEMESTER- II					
21PELS1	PROFESSIONAL ENGLISH FOR LIFE	-	40	5		2
	SCIENCES					

Objectives

- 1. To develop the language skills of students by offering adequate practice in professional contexts.
- 2. To enhance the lexical, grammatical and socio-linguistic and communicative competence of first year physical sciences students
- 3. To focus on developing students' knowledge of domain specific registers and the required language skills.
- 4. To develop strategic competence that will help in efficient communication
- 5. To sharpen students' critical thinking skills and make students culturally aware of the target situation.

Course outcome

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1	Recognize their own ability to improve their own competence in using the	K1
	language	
CLO2	Use language for speaking with confidence in an intelligible	K2
	and acceptable manner	
CLO3	Read independently unfamiliar texts with comprehension and understand the	K3
	importance of reading for life	
CLO4	Understand the importance of writing in academic life	K3
CLO5	Write simple sentences without committing error of spelling or grammar	K3

(Outcomes based on guidelines in UGC LOCF – Generic Elective)

Mapping with ProgrammeOutcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	S	М	М
CLO2	S	S	S	М	М
CLO3	S	S	М	М	S
CLO4	S	S	М	М	М
CLO5	S	S	S	S	S

S- Strong; M-Medium

Syllabus

UNIT 1: Communication8 IListening: Listening to audio text and answering questionlistening toInstructions8 ISpeaking: Pair work and small group work.8Reading: Comprehension passages –Differentiate between facts and opinion8Writing: Developing a story with pictures.8Vocabulary: Register specific - Incorporated into the LSRW tasks8

UNIT 2: Description

Listening: Listening to process description.-Drawing a flow chart.
Speaking: Role play (formal context)
Reading: Skimming/Scanning- Reading passages on products, equipment and gadgets.
Writing: Process Description –Compare and Contrast Paragraph-Sentence Definition and Extended definition- Free Writing.
Vocabulary: Register specific -Incorporated into the LSRW tasks.

UNIT 3: Negotiation Strategies

Listening: Listening to interviews of specialists / Inventors in fields (Subject specific)
Speaking: Brainstorming. (Mind mapping).Small group discussions (Subject- Specific)
Reading: Longer Reading text.
Writing: Essay Writing (250 words)
Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 4: Presentation Skills

Listening: Listening to lectures. Speaking: Short talks. Reading: Reading Comprehension passages Writing: Writing Recommendations Interpreting Visuals inputs Vocabulary: Register specific - Incorporated into the LSRW tasks

UNIT 5: Critical Thinking Skills

Listening: Listening comprehension- Listening for information.
Speaking: Making presentations (with PPT- practice).
Reading : Comprehension passages –Note making.Comprehension: Motivational article on Professional Competence, Professional Ethics and Life Skills)
Writing: Problem and Solution essay– Creative writing –Summary writing
Vocabulary: Register specific - Incorporated into the LSRW tasks

8 hours

8 hours

8 hours

8 hours

8 hours

Textbooks

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	TamilNadu State Council for Higher Education (TANSCHE)	English for Life Sciences Semester 1		

Reference Books

S.No.	Authors	Title of the Book	Publishers	Year of Publication
1	Sreedharan, Josh	The Four Skills for Communication	Foundation books	2016
2	Pillai, G Radhakrishna, K Rajeevan, P Bhaskaran Nair	Spoken English for you	Emerald	1998
3	Pillai, G radhakrishna, K Rajeevan, P Bhaskaran Nair	Written English for you	Emerald	1998

Evaluation pattern : Internal 50 marks ESE 50 marks

NOTE :

Internals: 5 tests x 10 marks each =Total 50 marks

Test 1 : Listening Test 2 : Speaking Test 3 : Reading Test 4 : Listening Test 5 : Speaking

ESE : Only Reading, Writing and Vocabulary components from all 5 units

Question Paper pattern for ESE

Section A : $5 \ge 2 = 10$ marks Section B : $4/6 \ge 5 = 20$ marks Section C : $2/3 \ge 10 = 20$ marks Total = 50 Marks

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22C03	Paper - III Cell and Molecular Biology	Core	73	2	-	5
Droomblo		•				

Preamble

- To study the structure and function of basic components of prokaryotic and eukaryotic cells, cell membranes and cell wall
- To study the structure and function of cell organelles
- To appreciate the cellular components underlying mitotic cell division.
- To understand the structure and function of DNA, RNA.
- To appreciate the central dogma of life, protein synthesis

Course outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CL01.	Understand the structure and function of prokaryotic and	K1 K2 K2
	eukaryotic cells, cell membranes, cell wall and cell organelles	\mathbf{K} 1, \mathbf{K} 2, \mathbf{K} 3
CLO2.	Know the process of cell cycle and cell division	K1, K2, K3
CLO3.	Understand the structure and function of DNA, RNA	K1, K2, K3
CLO4.	Appreciate the concept of transcription and translation	K1, K2, K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М

S- Strong; M-Medium

Syllabus

Unit-1

Prokaryotic and eukaryotic cell – structure: cell wall, plasma membrane and cytoplasm – structure and function. Cell organelles- Endoplasmic reticulum, Golgi body, Lysosomes, Vacuoles and Ribosomes, Mitochondria, chloroplast – structure and function.

Unit-II

Nucleus- structure and function; Cell cycle, Cell division- mitosis and meiosis. Chromosomes-Structure and function, Classification of chromosomes based on centromere. Special types of chromosomes- Lampbrush and Polytene chromosomes.

Unit-III

Nucleic acids: DNA as genetic material, Structure (Watson and Crick Model), and function of DNA. DNA replication- conservative and semi-conservative. Dispersive. Organization of DNA into chromosomes. Gene Mutation – types, causes. Chromosomal aberrations

14 hrs

14 hrs

Unit-IV

14 hrs

RNA- structure, function & Types (tRNA, mRNA and rRNA). Central dogma of life Transcription- initiation, elongation and termination. Post transcriptional modifications. Genetic code- concept and properties, wobble hypothesis.

Unit- V

15 hrs

Translation – initiation, elongation and termination. Gene regulation- prokaryotes-operon concept- *lac* operon and *trp* operon. Post translational modifications.

S.No.	Authors	Year of publication	Title of the book	Publishers
1.	Gupta P.K.	2017	Cell and Molecular Biology	Rastogi publications.
2.	Arumugam N & Meyyan RP	2014	Cell Biology, Molecular Biology & Genetics- Vol I	Saras Publications.
3.	Verma, P.S. and Agarwal,V.K	2010	Cytology, Genetics and plant breeding.	S.Chand& Co, New Delhi
4.	Shukla, R.S. and Chandel, P.S.	2009	Cytogenetics, evolution, Biostatistics and Plant Breeding	S. Chand & Co, New Delhi
5.	Verma P.S. and Agarwal V.K.	2004	Cell biology, Genetics, Molecular Biology, Evolution and Ecology.	S. Chand and Company, New Delhi.

Text Books

Reference Books

S.No.	Authors	Year of publication	Title of the book	Publishers
1.	Geoffrey M.	2013	The Cell – A Molecular	6 th Edition, Sinauer
	Cooper and		Approach.	Associates, Inc. Publishers -
	Robert E.			Sunderland, Massachusetts
	Hausman,			U.S.A.
2.	Clark, D. P., Paz	2012	Molecular Biology	Netherlands: Elsevier Science
	dernik, N. J.			
3.	Ajoy Paul.	2011	Cell and Molecular Biology	3 rd edition, Books and Allied
				Pvt Ltd., Kolkatta
4.	De Robertis and	2011	Cell and Molecular biology	Lippincott Williams and
	De Robertis.			Wilkins. UK

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Course Designers

Dr.K.S. Tamil Selvi Dr. E. Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22CP2	Core Practical II (Core Paper III and IV)	Core	-	-	60	4
Preamble						

• To study the structural and functional aspects of various tissue systems and organs of dicots and monocots.

- To discuss the structure and functions of the meristematic, primary & complex tissues.
- To understand the structure of cells in relation to the functional aspects.
- Understand the cellular components underlying cell division.

Course outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CLO1	Recall the structure of the cell organelles through electron	
	micrographs.	K1
CLO2	Understand the structure and functions of the meristematic, primary	
	and complex tissues.	K2
CLO3	Distinguish between normal and anomalous secondary growth.	
		K2
CLO4	Discuss the development of the endosperm and embryo.	
		K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	М	М	S
CLO2.	М	S	S	М	S
CLO3.	S	S	М	S	М
CLO4.	М	S	S	М	S

S- Strong; M-Medium

Syllabus

Paper III - Cell and Molecular Biology

Study of plant cell organelles through photomicrographs/permanent slides- Cell wall, plasma membrane (Fluid Mosaic model), nucleus, Mitochondria, Chloroplast, Endoplasmic reticulum, Golgi body, lysosomes, vacuoles and ribosomes. Lampbrush and polytene chromosomes.

• Study of Nucleic acids by micrographs

(**30hrs**)

DNA (Watson & Crick model), t-RNA (clover leaf model).

- Study of various stages of mitosis using cytological preparation of Onion root tips.
- Study of various stages of meiosis using cytological preparation of Flower bud-anther.

Paper IV – Plant Anatomy, Embryology and Wood technology: (30hrs)

Sectioning and Identification:

Plant Anatomy: Primary structure of Leaf, stem and root of dicot and monocot. Secondary thickening in dicot stem *-Polyalthia* and root–*Vigna*. Anomalous secondary thickening in the stems *- Nyctanthus* and *Boerhaavia*;root *- Beta vulgaris*. Anomalous secondary thickening in the monocot stem-*Dracaena*.

Spotters: Book diagram/Permanent slides/Photographs

Meristems – shoot and root apex, Xylem – tracheids and vessels, Phloem. Annual rings, Wood preservatives, Defects in wood.

Embryology: T.S of anther, Types of ovules, Types of embryosac- uninucleate, bi-nucleate and mature embryosac; Types of endosperms – nuclear, cellular and helobial. Embryo mounting (*Tridax*).

Course Designers

Dr.K.Gajalakshmi Dr. K.S.Tamil Selvi Dr.E.Uma

COURSE	COURSE NAME	CATEGORY	т	т	р	CREDIT	
NUMBER	COURSE NAME	CATEGORI	L	T	I	UKEDII	
PL22SB01	Skill Based Subject I- Horticulture	SBS	41	4	-	3	
Droomblo		•					

Preamble

To impart skill-oriented knowledge on the fundamental aspects of horticulture. \geq

To learn the soil types and their impact on growth of plants \geq

- To know the methods of plant propagation \geq
- To understand the different plant growing structures \geq

Course Outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1.	Acquire knowledge about the fundamental aspects of horticulture	K1
CLO2.	Understand the different techniques in gardening	К2
CLO3.	Know the cultivation of horticultural plants through various propagation techniques and structures	K2
CLO4.	Apply the knowledge in flower arrangement technique, hydroponics and microgreens	К3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	S	S
CLO2.	S	S	S	М	S
CLO3.	М	S	М	S	S
CLO4.	М	М	М	М	М

S-Strong; M- Medium

Syllabus

Unit I History and importance of horticulture, Branches in horticulture ;Soil types, Inorganic fertilizers-Nitrogen, phosphorous, potassium, mixed fertilizers, organic fertilizers, biofertilizers, biopesticides

UnitII

Techniques in horticulture -Selection of site, Preparation of soils for garden; Mulching, topdressing, blanching; Sowing, transplantation; Irrigation - Overhead, Surface, Underground; Weeding and pruning- Principles, Objectives and general technique.

9 hrs

Unit III

Plant Propagation techniques- Cutting-root, stem, leaf cutting; Layering- Simple, Tip, Serpentine, Trench, Mound and Air layering; Grafting- Approach, Cleft, Splice, Bark, Side Veneer, Whip and Tongue, Saddle, Bridge Inarch grafting; Budding-T-patch and H-chip budding

Plant propagating structures- Shade Houses, Greenhouse, Hot beds; Lath houses, Mist chambers, Nursery bed, Plastic Mulch, Light Chamber, High-Humidity Chambers.

Unit IV

Commercial Horticulture- Study of cut flower, production technology of Carnation, Gerbera, Anthurium, Gladiolus, Post harvest management of cut flowers – Floral decorations, bouquets and dry flowers - Grading, packing and marketing of flowers; Introduction to Hydroponics and Microgreens

Unit V

Landscape gardening-Importance; Principles; Garden adornments; Garden Types-Formal, Informal, Free style; Garden features -Walls, Fencing, Hedges, Edges, Arches, Pergola, Lawn, Shrubbery, Rockery, Topiary; Famous Gardens in India.

	S.No.	Authors	Year of	Title of the book	Publishers			
			publication					
	1.	Kumaresan, V	2014	Horticulture	Saras Publications, Nagercoil.			
	2.	Kumar.N	2010	Introduction to	Oxford & IBH Publishing Co. Pvt.			
				Horticulture	Ltd, New Delhi.			
	3.	Bansil,P.C.	2008.	Horticulture in	CBS Publishers and Distributors,			
				India.	NewDelhi.			
	4.	Manibhushan	1991.	Text Book of	Macmillan India Ltd, New Delhi			
		Rao.K.		Horticulture				

Reference Books

Cherence Books							
S.	Authors	Year of	Title of the book	Publishers			
No.		publication					
1.	Rajan,S. and	2007	Propagation of horticultural	Pitam Pura, New Delhi			
	B.L.Markose,		crops.				
2.	Bhattacharjee,S.K.	2006	Horticulture, Biotechnology	Pointer publishers, Jaipur.			
			and post harvest technology,				
3.	Christopher, E.P,	2001	Introductory Horticulture	Biotech Books, New			
				Delhi.			

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Assignment, Quiz, Group Discussion, Video / Animation

Course Designer

Dr.Sarah Jaison

9 hrs

8 hrs

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21SBCE	SBS / Coursera - Climate Change and Health: From Science to Action	SBS	45	-	-	3

S.No.	Topic of the Course	Link of the Course	Duration in hrs
1.	What is Climate Change?	https://www.coursera.org/learn/what-is-climate-	6
		change	
2.	Tropical Forest Landscapes		20
	101: Conservation &	https://www.coursera.org/learn/tropicalforests101	
	Restoration		
3.	Climate change and	https://www.coursera.org/learn/climate-change-	14
	Indigenous People and local	indigenous-communities	
	communities		
4.	Our Earth's future	https://www.coursera.org/learn/earth-climate-	8
		<u>change</u>	

1. What is Climate change?

- Week 1 The Climate System and Climate Change 2 hours
- Week 2 Impacts of Climate Change 2 hours
- Week 3 Attitudes About Climate Change 3 hours

2. Tropical Forest Landscapes 101: Conservation & Restoration

- Week 1 Why conserve and restore tropical forest landscapes? 3 hours
- Week 2 Ecology of tropical forest landscapes 3 hours
- Week 3 Social considerations for restoration and conservation 3 hours
- Week 4 Conservation strategies 3 hours
- Week 5 Restoration fundamentals -3 hours
- Week 6 Agroforestry and agroecology 3 hours
- Week 7 Funding conservation and restoration 4 hours

3. Climate change and Indigenous People and local communities

- Week 1 Climate change and Indigenous Peoples and local communities 1 hour
 Introduction 2 hours
- Week 2 Climate change impacts on indigenous peoples and local communities 3 hours
- Week 3 Coping and adapting to climate change impacts 3 hours
- Week 4 Local Indicators of climate change impacts 2 hours
- Week 5 The role of IPLC in global climate governance 3 hours

4. Our Earth's future

Week 1 - Climate Change Is Happening: See It – 2 hours

Week 2 - It All Comes Down to the Ocean – 1 hour

- Week 3 Climate Change is Happening: Model It 1 hour
- Week 4 Living with Climate Change 1 hour
- Week 5 Mitigate, Adapt, or Suffer? 2 hours

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22A01	Allied Paper – I: Fundamentals of Botany - I	Allied	73	2	-	4

Preamble

- To study the characteristics and life cycle of algae, fungi, bryophytes, pteridophytes, gymnosperms and angiosperms
- To gain knowledge of adaptations of plants to different environments
- To learn the horticulture techniques.

Course outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1	Know about characteristics and life cycle of algae,	K1
	fungi, bryophytes, pteridophytes, gymnosperms	
	and angiosperms	
CLO2	Understand the concept of plant adaptations to	K2
	different environments	
CLO3	Appraise the horticulture techniques.	K2

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	М	М	S	S
CLO2	S	S	М	М	М
CLO3	S	S	S	S	S

S- Strong; M-Medium

Syllabus

Unit I

General characteristics and classification of Algae (Fritsch-1935,1948) - A study of distribution, structure, reproduction and life cycle of *Volvox*. *Economic importance of algae, General characteristics and classification of Fungi (Alexopoulos and Mims, 1979) –A study of distribution, structure, reproduction and life cycle of *Saccharomyces*. *Economic importance of Fungi. General characteristics, classification (Zahlbruckner,1907), reproduction and *Economic importance of Lichens.

Unit II

*General characteristics and Classification of Bryophyte (Engler,1892)- Structure, Reproduction and Life cycle of *Riccia*, *General characteristics and Classification of Pteridophytes (Reimer,1954) - Structure, Reproduction and Life cycle of *Lycopodium*, *General characteristics and Classification of Gymnosperms (Sporne-1965) - Structure, Reproduction and Life cycle of *Cycas*.

Unit III

General Characteristics and Classification of Angiosperms (Bentham and Hooker, 1883). *Morphology of stem, *root, *leaf, *inflorescence, *flower and *fruit. Study of the following families with their Economic importance – Annonaceae, Rutaceae, Rubiaceae, Lamiaceae, Amarantaceae and Poaceae.

Unit- IV

Ecology –*Plant adaptations. Xerophytes - *Nerium, Opuntia*. Mesophytes -*Helianthus, Hibiscus*. Hydrophytes-*Hydrilla, Nelumbium*. *Phytogeography –*Vegetations of Tamil Nadu: *Evergreen, *scrub jungle, *Mangrove

Unit V

Horticulture: scope and importance, *propagation methods –*cutting, *layering and *grafting techniques), gardening and landscaping, *irrigation methods, manures, lawns, indoor plants, bonsai techniques.

Note: *Online Learning

Text Books				
	S.No.	Authors		

S.No.	Authors	Year of	Title of the book	Publishers
		publication		
1.	Srivastava,	2004	Algae	Pradeep Publications, Delhi
	H.N			
2.	Srivastava,	2004	Fungi.	Pradeep Publications, Delhi
	H.N.			
3.	Srivastava,	2004	Pteridophytes	Pradeep Publications, Delhi
	H.N.			
4.	Pandey, P.B	2001	Plant Anatomy	S. Chand & Co, New Delhi
-	<u>a:</u> 1 17	1001		
5.	Singh, V.	1981	Taxonomy of Angiosperms	Rastogi Publications, New
	and Jain			Delhi
6.	Purohit S.S	2003	Ecology, Environment and	Agrobios, India,Jodhpur
	&Ranjan .R		Pollution (First Edition)	

14 hrs

14 hrs

14 hrs

Reference Books

S.No	Authors	Year of publication	Title of the book	Publishers
1.	Sharma O.P.	2009.	Plant Taxonomy	Tata McGraw Hill Comp, New Delhi
2.	Pandey, B. P.	1992	Taxonomy of Angiosperms	S. Chand & Co, New Delhi

Pedagogy: Powerpoint, lecture, seminar, quiz and discussion.

Course Designers Dr. R. Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22AP1	Allied Paper - Practical	Allied	-	-	60	2

Preamble

- To observe and identify the different types of Algae, Fungi, Bryophytes, Pteridophytes and Gymnosperms.
- To obtain knowledge on anatomy of plants.

Course outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1	Differentiate the different forms of Algae, Fungi, Bryophytes,	K1
	Pteridophytes and Gymnosperms.	
CLO2	Preparation of culture media.	K2
CLO3	Illustrate the internal structure of plant tissues.	K3
CLO4	Analyse the various pigments in plants	K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	М	S	М	М	М
CLO2.	S	S	М	S	S
CLO3.	М	М	М	М	М
CLO4.	S	S	S	S	М

S- Strong; M-Medium

Syllabus

Semester- III

Specimens

Bryophytes - Habit of Riccia

Pteridophytes - Habit of Lycopodium cernum, L. clavatum, L. phlegmaria

Gymnosperms - Habit of Cycas, Male cone, Female cone

Taxonomy - Study of plants belonging to the families (Annonaceae, Rutaceae, Rubiaceae,

Lamiaceae, Amaranthaceae, and Poaceae) and their economic importance

Ecology- Habit of Nerium, Opuntia, Helianthus, Hibiscus, Hydrilla, Nelumbium

Slides

Algae - Volvox- Daughter colonies, Oogonia and Antheridia.

Fungi - Saccharomyces-Single cell structure
Bryophytes - *Riccia*- Reproductive Structures-Antheridium, Archegonium and Sporangium Pteridophytes - *Lycopodium*- L.S. of Cone Gymnosperms - *Cycas*- T.S. of Corolloid root **Sectioning** Bryophytes - *Riccia*- T.S. of Thallus Pteridophytes - *Lycopodium*- T.S.of Stem Gymnosperms - *Cycas* - T.S. of Leaflet, T.S. of Rachis **Demonstration** – cutting, layering, Grafting and bonsai

30 hrs

Semester- IV

Slides

Anatomy - Simple Tissues (Parenchyma, Sclerenchyma and Collenchyma), Complex Tissues (Xylem and Phloem)

Embryology - T.S. of Mature anther, 8- nucleated Embryosac, Mature Embryo

Sectioning

Anatomy- Primary structure of Dicot stem, root and leaf

Primary structures of Monocot stem and root

Secondary structure of stem and root

Experiments

Physiology - Determination of osmotic potential by Plasmolytic method.

Separation of leaf pigment by Paper chromatography.

Microbiology- Preparation of Potato Dextrose Agar Medium, Serial dilution techniques

Demonstration Experiments

Physiology – hill reaction,

Tissue culture – sterilization, preparation of MS medium, inoculation, callus induction and organogenesis.

Spotters Microbiology – fermentor, culture methods

Course Designers

Dr. R. Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
NM22EVS	Foundation Course-II – Environmental Studies	AEC	Self- study	-	-	Grade

Unit I - Multidisciplinary Nature of Environmental studies

Prologue, Definition, Scope and Significance, Need for public awareness.

Unit II - Natural resources

Renewable and non-renewable resources, Natural resources and associated problems. Forest resources, Water resources, Mineral resources, Food resources, Energy resources, Land resources, Role of an individual in conservation of natural resources and Equitable use of resources for sustainable lifestyles.

Unit III – Ecosystems

Concept of an ecosystem, Structure and function of an ecosystem, Producers, consumers and decomposers, Energy flow in the ecosystem, Food chains and food webs, Ecological pyramids, Ecological succession, Types of ecosystems

Unit IV - Biodiversity and its conservation

Introduction, Levels of biodiversity - genetic, species and ecosystem, Biogeographical classification of India, Value of biodiversity, Biodiversity at global, National and local levels, India as a megadiversity nation, Hotspots of biodiversity, Threats to biodiversity, Endangered and Endemic species of India, Conservation of biodiversity.

Unit V - Environmental Pollution

Definition – Air, Water, Soil, Marine, Noise and Thermal pollution, Nuclear hazards, Solid waste management, Disaster management, Role of an individual in pollution management, Case studies

Unit VI - Social issues and the environment

From unsustainable to sustainable development, Urban problems related to energy, Water conservation, Climatic changes, Wasteland reclamation, Consumerism and waste products, Environment protection Acts, Air Act, Water Act, Wildlife Protection Act, Forest Conservation Act, Enforcement of environment legislation, Public awareness

Unit VII - Human population and the environment

4 hrs

4 hrs

3 hrs

3 hrs

3 hrs

4 hrs

Population growth and explosion, Family Welfare programme, Environment and human health, Human Rights, Value Education, HIV/AIDS, Women and child welfare, Role of information technology in Environment and human health

Unit VIII - Field work

Topics for field work and project, Guidelines for field work and project, Project report.

References

- 1. Agarwal.K.C. 2001 Environmental Biology, Nidi Publ. Ltd. Bikaner.
- 2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd., Ahmedabad –380 013, India, Email: <u>maping@icenet.net(R)</u>
- 3. Brunner.R.C., 1989, Hazardous Waste Incineration, McGraw Hill Inc.480p
- 4. Clark.R.S, Marine Pollution, Clanderson Press Oxford (TB)
- 5. Cunningham.V.P, Cooper, T.II.Gorhani.E & Hepworth.M.T, 2001, EnvironmentalEncyclopedia, Jaico Publ. House, Mumbai 1196p
- 6. De A.K., Environmental Chemistry, Wiley Eastern Ltd.
- 7. Down to Earth, Centre for Science and Environment (R)
- 8. Gleick.H.P, 1993, Water in crisis, Pacific Institute for Studies in Dev. Environment & Security, Stockholm Env. Institute Oxford Univ. Pres 173 p
- 9. Hawkins.R.E, Encyclopedia of Indian Natural History, Bombay Natural History Society, Bombay ®
- 10. Heywood.V.II&Watson.R.T.1995,GlobalBiodiversityAssessment.CambridgeUniv.Press11.10p
- 11. Jadhav.II & Bhosale.V.M.1995.Environmental Protection and
Laws. Himalaya Pub.House, Delhi 284 p.
- 12. Mekinney.M.I & Schoeh.R.M 1996, Environmental Science systems & Solutions, Webenhanced edition 639p.
- 13. Mhaskar.A.K, Matter Hazardous, Techno-Science Publications (TB)
- 14. Miller.T.G. Jr., Environmental Science, Wadsworth Publishing Co,(TB)
- 15. Odum.E.P 1971, Fundamentals of Ecology, W.B.Saunders Co. USA. 574p
- 16. Rao.M.N & Datta.A.K. 1987, Waste Water treatment, Oxford & IBM Publ. Co. Pvt. Ltd.345 p.
- 17. Sharma.B.K. 2001, Environmental Chemistry, Goel Publ. House, Meerut
- 18. Survey of the Environment, The Hindu (M)
- 19. Townsend.C, Harper.J and Michael Begon, Essentials of Ecology, Blackwell Science(TB)
- 20. Trivedi.R.K, Handbook of Environmental Laws, Rules, Guidelines, compliances and Standards, Vol I and II Enviro Media (R).
- 21. Trivedi.R.K and P.K.Goel, Introduction to air pollution, Techno-Sciences Publications(TB)
- 22. Wagner.K.D. 1998, Environmental Management. W.B.Saunders Co., Philadelphia, USA499p
- (M)Magazine; (R) Reference; (TB) Textbook

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22C04	Paper - IV – Plant Anatomy, Wood Technology and Embryology	Core	73	2	-	5

- To know the anatomical structure of the Angiosperm plants
- To identify woods of commercial importance
- Methods of preserving and seasoning woods.
- To study the structure and development of embryo

Course outcomes

On the successful completion	of the course,	, students will be able to
------------------------------	----------------	----------------------------

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Know the fundamental structure of different plant tissue system	K1
CLO2	Understand the development of different types of cells in plant system	K2
CLO3	Identify the quality of wood	K3
CLO4	Analyse the Anatomical variation between the plant species	K4

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	М	S	М
CLO2	S	М	S	М	М
CLO3	S	S	М	S	М
CLO4	S	S	М	М	М

S- Strong; M-Medium

Syllabus

Unit I

(15 hrs)

(14 hrs)

Plant Anatomy: General account on Meristems. *Shoot Apical Meristems, theories - apical cell theory, histogen, tunica and corpus*. Root Apical Meristems- Korper and Kappe theory and Quiscent centre theory. Simple tissues- parenchyma, collenchyma and sclerenchyma.

Unit II

Evolution of plant vascular system. Complex tissues – primary xylem and phloem, secondary xylem and phloem. Primary structure of dicot and monocot stem; dicot and monocot root. Anatomical structure of dicot and monocot leaf. Epidermal Tissues -Types of stomata and *Secretory tissues*.

Unit III

(15 hrs)

Formation of Secondary thickening in Dicot stem and Dicot root. Anomalous secondary thickening in Dicot stems - Nyctanthus and Boerhaavia; Dicot root of Beta vulgaris. *Anomalous secondary thickening in monocot stem – Dracaena*.

Unit IV:

(14 hrs)

Wood Technology: Brief account on the formation and types of woods. Annual rings and Dendrochronology. Physical, Chemical, and Mechanical properties of wood. *Defects in woods*. *Seasoning of woods*, Methods of preservation of wood, and uses of wood.

Unit V:

(15 hrs)

Embryology: Microsporogenesis and development of male gametophyte; Megasporogenesis and development of female gametophyte. Structure of 8 nucleate monosporic embryosac (Polygonum), Bisporic (Allium), tetrasporic (Peperomia). *Fertilization and Double Fertilization*. *Types of endosperm*. Development of monocot (Luzulla) and dicot (Capsella) embryo.

Note: *Blended Learning

Т	ext Bool	ks			
	S.No	Authors	Year of publication	Title of the book	Publishers
	1.	Pandey.BP.	2001	Plant Anatomy	Sixth Revised edition. S.Chand and company.
	2.	Tayal, MS	2004	Plant Anatomy	Rastogi Publications
		Katherine	2011	Anatomy of seed	John Wiley and Sons. U.S.A.
	3.	Esau		plants	
		Singh, V.,	2018	Anatomy and	Rastogi Publications
	4.	Pande, PC.		Embryology of	
		and Jain, DK		Angiosperms	
		Christian	2020	Wood Protection	Mdpi AG
	5.	Brischke		and Preservation	

Reference Books Title of the book S.No Authors Year of **Publishers** publication 1. D.F.Cutter. 2011 Plant Anatomy, An Blackwell Publishing. C.E.J applied Approach Australia. Bottla. D.W.Stevenson, Principles of Wood Springer Berlin, 2. Franz F. Ρ. 2020 Science and Technology Kollmann, Heidelberg Wilfred A. Côté Bhojwani, The Embryology of S Chand publishers SS., 2020 3.

Bhatnagar, S)	Angiosperms	
and Dantu, PK			

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Links for blended learning

S.No.	Unit	Торіс	Link for the topic
1.	Unit I	Shoot Apical	https://www.youtube.com/watch?v=03K82iPyWS0
		Meristems, theories	
		- apical cell theory,	
		histogen, tunica and	
		corpus	
2.	Unit II	Secretory tissues	https://www.youtube.com/watch?v=03K82iPyWS0
3.	Unit III	Anomalous	https://m.youtube.com/watch?v=lp4rIgsRdLc
		secondary	
		thickening in	https://byjus.com/biology/ts-of-dracaena-stem/
		monocot stem –	
		Dracaena	
4.	Unit IV	Defects in woods	https://www.youtube.com/watch?v=9zT3qaZJxIw
		Seasoning of woods	https://www.youtube.com/watch?v=qHzIWl7CS8E
5.	Unit V	Fertilization and	https://www.youtube.com/watch?v=dgFY7WUTASQ
		Double Fertilization	
		Types of endosperm	https://www.youtube.com/watch?v=bUjVHUf4d11

Course Designer

Dr.M.Kamalam

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22CP2	Core Practical II (Core Paper III and IV)	Core	-	-	60	4

• To study the structural and functional aspects of various tissue systems and organs of dicots and monocots.

- To discuss the structure and functions of the meristematic, primary & complex tissues.
- To understand the structure of cells in relation to the functional aspects.
- Understand the cellular components underlying cell division.

Course outcomes

On the successful completion of the course, students will be able to

CO Number	CO Statement	Knowledge Level
CLO1	Recall the structure of the cell organelles through electronmicrographs.	
		K1
CLO2	Understand the structure and functions of the meristematic, primary and	
	complex tissues.	K2
CLO3	Distinguish between normal and anomalous secondary growth.	
		K2
CLO4	Discuss the development of the endosperm and embryo.	
		K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
	S	S	М	М	S
CLO1.					
	М	S	S	М	S
CLO2.					
	S	S	М	S	М
CLO3.					
	М	S	S	М	S
CLO4.					

S- Strong; M-Medium

Syllabus

Paper III - Cell and Molecular Biology

 Study of plant cell organelles through photomicrographs/permanent slides- Cell wall, plasma membrane (Fluid Mosaic model), nucleus, Mitochondria, Chloroplast, Endoplasmic reticulum, Golgi body, lysosomes, vacuoles and ribosomes. Lampbrush and polytene chromosomes.

(30hrs)

- Study of Nucleic acids by micrograph
- DNA (Watson & Crick model), t-RNA (clover leaf model).
- Study of various stages of mitosis using cytological preparation of Onion root tips.
- Study of various stages of meiosis using cytological preparation of Flower bud-anther.

Paper IV – Plant Anatomy, Embryology and Wood technology: (30hrs)

Sectioning and Identification:

Plant Anatomy: Primary structure of Leaf, stem and root of dicot and monocot. Secondary thickening in dicot stem *-Polyalthia* and root–*Vigna*. Anomalous secondary thickening in the stems *- Nyctanthus* and *Boerhaavia*; root *- Beta vulgaris*. Anomalous secondary thickening in the monocot stem-*Dracaena*.

Spotters: Book diagram/Permanent slides/Photographs

Meristems – shoot and root apex, Xylem – tracheids and vessels, Phloem. Annual rings, Wood preservatives, Defects in wood.

Embryology: T.S of anther, Types of ovules, Types of embryosac- uninucleate, bi-nucleate and mature embryosac; Types of endosperms – nuclear, cellular and helobial. Embryo mounting (*Tridax*).

Course Designers

Dr.K.Gajalakshmi Dr. K.S.Tamil Selvi Dr.E.Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22SB02	Skill Based Subject II - Horticulture	SBS	41	4	•	3

- To impart the knowledge on the horticultural wealth of India
- To get acquainted to commercial floriculture
- To develop skill in post-harvest technology
- To understand the concept of packing and marketing of horticultural products
- To understand agripreneurship and its concepts

Course outcomes

On the successful completion of the course, students will be able to understand the following:

CLO	CLO Statement	Knowledge
Number		Level
CLO1.	Understand the techniques involved in cultivation and maintenance of commercial flowers	K1
CLO2.	Apply the techniques in commercial horticulture	K2
CLO3.	Skilled in the post-harvest technology	K3
CLO4.	Understand the strategies to become women entrepreneurs.	K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	S	М
CLO2.	S	М	S	S	М
CLO3.	М	S	S	М	S
CLO4.	S	S	S	S	S

S- Strong; M-Medium

Syllabus

Unit I

Scope and importance of commercial floriculture in India. Production techniques of commercial flower crops - Rose, Chrysanthemum, Tuberose, Gladiolus, Dahlia, Marigold, Jasmine, Crossandra, Bird of Paradise, Lilies and Heliconia. Postharvest management of flower crops

Unit II

Flower arrangement concepts and Ikebana- techniques, types, suitable flowersand cut foliage. Dry flowers- dehydration techniques and preservation.Floral arts and adornments, Bonsai culture and maintenance

8 hrs

Unit III

Importance of post-harvest technology in horticulture crops, pre-harvest factors affecting quality, post-harvest losses and factors responsible for deterioration of horticulture produce; Maturity indices, physiological and biochemical changes during ripening process, hastening and delaying of ripening process

Unit IV

Harvesting, handling, curing, grading and pre-cooling of horticulture produce; Packaging, types of packages, recent advances in packaging, use of grape guard in packaging, cushioning materials; Transportation and modes of transport; Marketing of fresh produce; Pre and post-harvest treatments for extending storage life; Principles and methods of storage.

Unit V

Text Books

Agripreneurship: definition, nature, scope, importance, types, functions and dimensions, characteristics of successful entrepreneur, approaches to entrepreneurship, Factors affecting entrepreneurial growth - psychological factors, cultural factors, social factors, economic factors, personality factors, Women entrepreneurshipconcept, importance, problems and remedies

I CHIC D	00110			
S.No.	Authors	Year of	Title of the book	Publishers
		publication		
1.	Kumaresan, V	2014	Horticulture	Saras Publications,
				Nagercoil.
2.	Bansil,P.C.	2008	Horticulture in India.	CBS Publishers and
				Distributors, NewDelhi
3.	K.L.Chadda,	2009	Advances in	Malhotra Publishing House,
			Horticulture.	New Delhi.
4.	Dhillon, W.S.	2013	Fruit Production In India	Narendra Publishing House.
				New Delhi

Reference Books

ILCICI C	IICC DOORS			
S.No.	Authors	Year of	Title of the book	Publishers
		publication		
1.	Rajan, S and	2007	Propagation of horticultural	New India Publishing
	Markose, B.L.		crops.	Agency, New Delhi
2.	Bhattacharjee,	2006	Horticulture, Biotechnology	Pointer publishers, Jaipur.
	S.K.		and post harvest	
			Biotechnology	
3.	Kumar, N.J.B.	1997	Introduction to spices,	Oxford & IBH, New
	M. Md. Abdul		Plantation crops and	Delhi.
	Khaddar, Ranga		Aromatic plants.	
	Swamy, P. and			
	Irrulappan, I.			

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Course Designer

Dr.Sarah Jaison

8 hrs

9 hrs

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21SBCE	SBS / Coursera - Climate Change and Health: From Science to Action	SBS	45	-	-	3

S.No.	Topic of the Course	Link of the Course	Duration in
			hrs
1.	What is Climate Change?	https://www.coursera.org/learn/what-is-climate-	6
		change?specialization=our-responses-climate-	
		<u>change</u>	
2.	Tropical Forest Landscapes		20
	101: Conservation &	https://www.coursera.org/learn/tropicalforests101	
	Restoration		
3.	Climate change and	https://www.coursera.org/learn/climate-change-	14
	Indigenous People and local	indigenous-communities	
	communities		
4.	Our Earth's future	https://www.coursera.org/learn/earth-climate-	8
		<u>change</u>	

5. What is Climate change?

Week 1 - The Climate System and Climate Change -2 hours

Week 2 - Impacts of Climate Change - 2 hours

Week 3 - Attitudes About Climate Change - 3 hours

6. Tropical Forest Landscapes 101: Conservation & Restoration

Week 1 - Why conserve and restore tropical forest landscapes? - 3 hours

Week 2 - Ecology of tropical forest landscapes - 3 hours

- Week 3 Social considerations for restoration and conservation 3 hours
- Week 4 Conservation strategies 3 hours

Week 5 - Restoration fundamentals – 3 hours

- Week 6 Agroforestry and agroecology 3 hours
- Week 7 Funding conservation and restoration 4 hours

7. Climate change and Indigenous People and local communities

Week 1 - Climate change and Indigenous Peoples and local communities – 1 hour
Introduction – 2 hours
Week 2 - Climate change impacts on indigenous peoples and local communities – 3 hours
Week 3 - Coping and adapting to climate change impacts – 3
hoursWeek 4 - Local Indicators of climate change impacts –
2 hours Week 5 - The role of IPLC in global climate
governance – 3 hours

8. Our Earth's future

Week 1 - Climate Change Is Happening: See It – 2 hours

Week 2 - It All Comes Down to the Ocean - 1 hour

Week 3 - Climate Change is Happening: Model It – 1 hour

Week 4 - Living with Climate Change – 1 hour

Week 5 - Mitigate, Adapt, or Suffer? – 2 hours

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22A02	Allied Paper II – Fundamentals of Botany- II	Allied	73	2	-	4

- To Gain Knowledge of the anatomy of plants
- To Gain Knowledge of the embryology of plants
- To study the metabolism of plants
- To know about the plant tissue culture techniques
- To Gain Knowledge of the microbial techniques

Course outcomes

On the successful completion of the course, students will be able to

CLO Number	CLO Statement	Knowledge Level
CLO1	Appreciate the anatomy of plants	K1
CLO2	Appreciate the embryology of plants	K2
CLO3	Appreciate the metabolism of plants	К3
CLO4	Understand the plant tissue culture techniques	К3
CLO5	Understand the microbial techniques	K2

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CL01	М	S	М	М	М
CLO2	S	S	М	S	S
CLO3	М	М	М	М	М
CLO4	S	S	S	S	М
CLO5	S	М	М	М	М

S- Strong; M-Medium

Syllabus

Unit I

A brief account of meristems. Simple and complex permanent tissues Primary structure of dicot and monocot stem, root and leaf; *Secondary structure of dicot stem and root*.

Unit II

Microsporogenesis and development of male gametophyte, megasporogenesis and development of female gametophyte, structure of monosporic 8 - nucleate embryo sac (Polygonum). *Types of endosperm*, *development of dicot and monocot embryos*.

Unit III

Plant Physiology- *osmosis and *diffusion*. Passive and Active absorption of water, Photosynthesis -Photosynthetic apparatus, light and dark reaction. *Transpiration*.Plant movements, *plant growth regulators -Auxin and Cytokinin*.

Unit IV

Tissue culture: Concept and Techniques- Sterilization, *Medium preparation (MS medium)*, Callus culture,

15 hrs

14 hrs

15hrs

organogenesis and regeneration. *Hardening and field transfer*.

Unit-V Microbial techniques

15 hrs

Methods of sterilization, *Culture media- PDA*, *Serial dilution techniques*. Pure culture techniques, Microbial growth and Growth curve. Typical Fermentation process.

Note: *Blended Learning

Text books

S.No	Authors	Year of	Title of the book	Publishers
		publication		
1.	Jain.V.K	2017	Fundamentals of plant	Chand & Company,
			physiology	New Delhi
2.	Kalyan Kumar,	2004	An Introduction to Plant	New Central Book
	De.		Tissue Culture.	Agency Pvt.Ltd.
				Howrah.
3.	Kumaresan, V	2001	Biotechnology	Saras Publication,
				Nagercoil, TamilNadu
4.	Verma.	1985	Text book Plant Physiology	Emkay publication,
				New Delhi.

Reference books

S.No	Authors	Year of	Title of the	Publishers
		publication	book	
1.	Sharma, P.D	2010.	Microbiology	Rastogi Publications, Meerut.
2.	Michael J.	1988	Microbiology	Mc Graw Hill, New Delhi.
	Pelczar, E.C.S.			
	Chan and Noel			
	R Krieg.			
3.	Mukherji.S. and	1996.	Plant Physiology	New Central Book Agency,(P)
	A.K. Ghosh.			Ltd. Kolkatta.

Pedagogy: Powerpoint, lecture, seminar, quiz and discussion.

Links for blended learning

<u>J • • • • • • • • • • • • • • • • • • •</u>				
S.No.	Unit	Торіс	Link for the topic	
1.	Unit I	Secondary structure	https://www.youtube.com/watch?v=SiZiTeQ-nHk	
		of dicot stem		
			https://www.youtube.com/watch?v=LzFDghMoMRQ	
		Secondary structure	https://www.youtube.com/watch?v=bbgwE-h84iE	
		of dicot root		
2.	Unit II	Types of	https://www.youtube.com/watch?v=EgiET_piGpA	
		endosperm		
		Development of	https://www.youtube.com/watch?v=DPcSTA3EUE4	
		dicot and monocot		
		embryos	https://www.youtube.com/watch?v=x26Fg8ltCGw	

3.	Unit III	Osmosis and diffusion	https://www.youtube.com/watch?v=eeOcGX5qPp8
			https://www.youtube.com/watch?v=iP6PtdhgzSk
		Transpiration	https://www.youtube.com/watch?v=zt9ja6p8q6U
		Plant growth regulators - Auxin,	https://www.youtube.com/watch?v=Py2O9rXENIg
		Cytokinin	https://www.youtube.com/watch?v=DMWB9b58Rt4
4.	Unit IV	Medium preparation (MS medium)	https://www.youtube.com/watch?v=eMv_PMNPYMc
		Hardening and field transfer	https://www.youtube.com/watch?v=YodPROvjroU
5.	Unit V	Methods of sterilization	https://www.youtube.com/watch?v=Bh-ytzY5uVY
		Culture media- PDA, serial dilution techniques	https://www.youtube.com/watch?v=OLz9JOrJepU https://www.youtube.com/watch?v=Ppe_bgnPFHU

Course Designer

Dr. R. Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21AP1	Allied Paper - Practical	Allied	-	-	60	2

- To observe and identify the different types of Algae, Fungi, Bryophytes, Pteridophytesand Gymnosperms.
- To obtain knowledge on anatomy of plants.

Course outcomes

On the successful completion of the course, students will be able to

CLO	CO Statement	Knowledge
Number		Level
CLO1	Differentiate the different forms of Algae, Fungi,	K1
	Bryophytes, Pteridophytes and Gymnosperms.	
CLO2	Preparation of culture media.	K2
CLO3	Illustrate the internal structure of plant tissues.	К3
CLO4	Analyse the various pigments in plants	K3

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	М	S	М	М	М
CLO2.	S	S	М	S	S
CLO3.	М	М	М	М	М
CLO4.	S	S	S	S	М

S- Strong; M-Medium

Syllabus

Semester- III

Specimens

Bryophytes - Habit of *Riccia*

Pteridophytes - Habit of Lycopodium cernum, L. clavatum, L. phlegmaria

Gymnosperms - Habit of Cycas, Male cone, Female cone

Taxonomy - Study of plants belonging to the families (Annonaceae, Rutaceae, Rubiaceae, Lamiaceae, Amaranthaceae, and Poaceae) and their economic importance

Ecology- Habit of *Nerium, Opuntia, Helianthus, Hibiscus, Hydrilla, Nelumbium* Slides

Algae - Volvox- Daughter colonies, Oogonia and Antheridia.Fungi - Saccharomyces-Single cell structure

Bryophytes - *Riccia*- Reproductive Structures-Antheridium, Archegonium and SporangiumPteridophytes - *Lycopodium*- L.S. of Cone

Gymnosperms - Cycas- T.S. of Corolloid root

Sectioning

Bryophytes - Riccia- T.S. of Thallus

Pteridophytes - Lycopodium- T.S.of Stem

Gymnosperms - Cycas - T.S. of Leaflet, T.S. of Rachis Demonstration - cutting, layering, Grafting and bonsai

Semester- IV

30 hrs

Slides

Anatomy - Simple Tissues (Parenchyma, Sclerenchyma and Collenchyma), Complex Tissues (Xylem and Phloem)

Embryology- T.S. of Mature anther, 8- nucleated Embryosac, Mature Embryo

Sectioning

Anatomy- Primary structure of Dicot stem, root and leaf

Primary structures of Monocot stem and root Secondary

structure of stem and root

Experiments

Physiology - Determination of osmotic potential by Plasmolytic method.

Separation of leaf pigment by Paper chromatography.

Microbiology- Preparation of Potato Dextrose Agar Medium, Serial dilution techniques

Demonstration Experiments

Physiology – hill reaction,

Tissue culture - sterilization, preparation of MS medium, inoculation, callus induction and organogenesis.

Spotters Microbiology – fermentor, culture methods

Course Designers

Dr. R. Sumathi

		Category	L	Т	Р	Credit
COURSE NUMBER	COURSENAME					
NM22DTG	DESIGN THINKING					
		Theory	30	-	-	2

- 1. To expose the students to the concept of design thinking as a tool for innovation
- 2. To facilitate them to analyze the design process in decision making
- 3. To impart the design thinking skills

Course Outcome

On the successful completion of the course, students will be able to:

CLO	CLO Statement	Knowledge
Number		Level
CL01	Understand the concepts of Design thinking and its application in varied business settings	K1
CLO2	Describe the principles, basis of design thinking and its stages	K2
CLO3	Apply design thinking process in problem solving	K3
	Analyse the best practices of design thinking and impart them in	K4
CLO4	business and individual day to day operations.	

Mapping with Programme Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5	
CL01	S	М	М	S	S	
CLO2	М	S	S	М	М	
CLO3	S	S	S	М	S	
CLO4	S	S	S	S	S	
S-Strong: M-Medium						

UNIT –1

(6 Hours) DesignThinkingOverview: Introduction to DesignThinking and Design Research Strategies -Design

Thinking Skills (6 Hours)

UNIT-II

Design Thinking Mindset- Principles of Design Thinking-Basis for design thinking- Design Thinking Hats -Design thinking team

UNIT-III

UNIT-IV

(6 Hours) Empathize - definition - Listen & Empathize with the Customers and/ or Users - Tools and Techniques

(6 Hours)

Define -Definition -Definingthe Problem -Tools and Techniques-Journey mappingand Ideate - definition -Ideation techniques

UNIT -V

(6 Hours)

Prototype-Definition-Prototype Alternate Solutions-Test the Solutions-Visualization-Story Telling -**Cautions and Pitfalls - Best Practices**

TextBooks:

S. No.	Author(s)	TitleoftheBook	Publisher	Year of Publication
-----------	-----------	----------------	-----------	------------------------

	Christian Mueller-	HandbookofDesignThinking Tips&Toolsforhowtodesign	Amazon Kindle	2018
1.	Roterberg	thinking	Version	2010
2	GavinAmbrosePaul Harris	DesignThinking	AVAPublishing Switzerland	2010
3	Sambrant Srivastava and Vijay Kumar	A Text Book of Design Thinking	Vayu Education of India	2022

ReferenceBooks:

Sl.No.	Author(s)	TitleoftheBook	Publisher	Year of Publication
	Maurício Vianna YsmarViannaIsabel			
1	K. Adler BrendaLucena BeatrizRusso	DesignThinking-Business Innovation	MJVPress	2011
2	MoritzGekeler	Apracticalguidetodesign thinking	Friedrich-Ebert-Stiftung	2019
3	J.Berengueres	TheBrownBookofDesign Thinking	UAEUniversity College,AlAin	2014

BlendedLearningLinks

UNIT	TOPICS	LINK
	Introduction to	https://www.digimat.in/nptel/courses/video/109104109/L01.html
UNIT I	DesignThinking	
	DesignThinkingskills	https://www.youtube.com/watch?v=b-9Id-Jt_PI
	Principles & Basis of	https://youtu.be/6-NRiom8K9Y
	DesignThinking	
	DesignThinking hats	https://www.youtube.com/watch?v=bc-BvFQDmmk
		http://acl.digimat.in/nptel/courses/video/109104109/L02.html
		http://acl.digimat.in/nptel/courses/video/109104109/L03.html
UNIT III	Empathize	https://youtu.be/ls2mqHs02B0
		http://acl.digimat.in/nptel/courses/video/10910410
UNIT IV	Define	9/L04.html https://youtu.be/veixQsRnZZU
	Define	https://youtu.be/6-bDSKZJEAM
		http://acl.digimat.in/nptel/courses/video/109104109/L11.html
	Ideate	http://acl.digimat.in/nptel/courses/video/109104109/L12.html
		http://acl.digimat.in/nptel/courses/video/109104109/L13.html
	Prototype	http://acl.digimat.in/nptel/courses/video/10910410
	Поютуре	9/L15.html
UNIT V		http://acl.digimat.in/nptel/courses/video/109104109/L16.html
		http://acl.digimat.in/nptel/courses/video/109104109/L17.html
		http://acl.digimat.in/nptel/courses/video/109104109/L18.html
	Testing	http://acl.digimat.in/nptel/courses/video/109104109/L19.html

JOB1753	Job oriented course – Phytopharmaceutical science	Ca teg or y		C r e d it
		JO C		

- To understand the basic concepts of herbal medicine
- To identify the quality of the herbal drugs
- To know the simple methods of preparation of herbal medicine

Syllabus

Unit I

Crude drug- Definition, classification of crude drugs- morphological, chemical and pharmacological classification.Study of organized and unorganized crude drugs.

Unit II

Collection of crude drugs- Aerial and underground parts.Processing of crude drugs - drying methods, packing, labelling and marketing of crude drugs.Extraction of crude drugs - soxhlet extraction and steam distillation.

Unit III

8 hours

8 hours

8 hours

8 hours

Evaluation of crude drugs - organoleptic evaluation- texture, taste and odour; microscopic evaluation trichomes, stomata and palisade tissues.Physical evaluation-Moisture content, extractive values and fluorescent analysis.

Unit IV

8 hours Biological sources of popular medicinal plants used in traditional system of medicine at industrial level. Aconitum napellus, Aloe vera, Alpiniagalanga, Croton tiglium, Eclipta alba, Semecarpusanacardium, Strychnusnuxvomica, Withaniasomnifera, Zingiberofficinalis and Maducalongifolia.

Unit V

Traditional systems of medicine- basic concepts of Siddha and Ayurveda.Herbal formulations- Internal medicine- Churanam, vadagam, tablet, parpam and legium; External applications - oil and ointment.

Text Books

- 1. Kokate, K., A.P. Purohit and S.B. Gokhale, 2007. Pharmacognosy, 39thEdn. NiraliPrakahan, India.
- 2. Saharan, Moond, Chouhan and Gupta, 2008. Principles of Pharmacognosy, Agrobios, India.

Reference Books

- 1. Tyler, E.V., Brady, R.L. and Robbers, E.J., 1981. Pharmacognosy. 9thedn. Lea and Febiger, Philadelphia.
- 2. Trease, G.E. and E.C.Evans, 1983. Pharmacognosy. 12th edition, Bailliere Tindall, Eastbourne, U.K.

Pedagogy: Power point presentation, Lecture, seminar, quiz and discussion and demonstration

Practical:

20 hrs

1. Morphology and medicinal uses of Alpinia galanga, Withania somnifera, Glycyrhiza glabra, Zingiberofficinalis, Gloriosa superba, PongamiapinnataandMaducalongifolia.

- 2. Physical evaluation- Estimation of moisture content
- 3. Extractive value of any one plant powder with Polar and non-polar solvent using soxhlet apparatus
- 4. Qualitative analysis of Alkaloids, tannins and terpenoids
- 5. Preparation of herbal medicine Churanam, Tablet, Syrup, legium, oil and ointment.

Supporting activities

External source: 50% of the theory and practicals will be handled by the expert's from external agencies

Field study: Students will be taken for local trip to identify the plants at the field level.

Industrial visit- to Pharmaceutical industry.

Course designers

Dr. M. Kamalam

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22C05	Core Paper V – Plant Taxonomy and Economic Botany	Theory	58	2	-	4

- To acquire the fundamental knowledge, basic concepts and principles of plant systematic.
- To study the economically importance of the plants.

Course Learning outcomes

On the successful completion of the course, students will be able to:

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand the general features of Angiosperms and the	K1, K2, K3, K4
	terminologies used.	
CLO2	Understand the history and concepts underlying various	K1, K2, K3, K4
	approaches to plant taxonomy and classification of angiosperms;	
	scientific names and the rules governing their application.	
CLO3	Comprehend major taxa and their identifying characteristics, and	K1, K2, K3, K4
	develop knowledge of the current taxonomy of major plant	
	families.	
CLO4	Develop a deep knowledge on economic importance of plants	K1, K2, K3, K4
	and herbarium preparation	

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	М	S	М	S	М
CLO2.	S	М	S	S	М
CLO3.	М	S	М	М	S
CLO4.	М	S	М	S	S

S- Strong; M-Medium

Syllabus Unit I

Plant Taxonomy: History of plant taxonomy, Herbarium techniques and specimen preparation, Digital herbarium and their significance, technical terms of plant description-plant types (Habit and Habitat) vegetative (root, stem and leaf) and reproductive (inflorescence flower and fruit) parts, preparation of floral diagram and floral formula.

Unit II

Systems of classification: Artificial – Linnaeus; Natural – Bentham and Hooker; Phylogenetic– Arthur Cronquist, Modern APG system IV. Botanical Nomenclature – ICN – priority, typification, effective and valid publication and author citation.

12 hrs

Unit III

A detailed study of the following families including economic importance-Annonaceae, Nymphaeceae, Capparidaceae, Tiliaceae, Rutaceae, Anacardiaceae, Myrtaceae, Cucurbitaceae, Rubiaceae, Asteraceae.

Unit IV

A detailed study of the following families including economic importance-Sapotaceae, Apocynaceae, Asclepiadaceae, Verbenaceae, Lamiaceae, Amarantaceae, Euphorbiaceae, Orchidaceae, Liliaceae and Poaceae.

Unit V

Economic Botany – The importance and uses of plant products – fibres: Cotton (*Gossypium hirsutum* L.) and Jute (*Corchorus olitorius* L.); food plants – rice (*Oryza sativa* L.) and potato (*Solanum tuberosum* L.); tannins and dyes –*Terminalia chebula* Retz. and *Indigofera tinctoria* L.; resins and gums- *Ferula asafoetida* L. and gum Arabic (*Acacia arabica* (L.f.) Willd); spices and condiments – Cardamom (*Elettaria cardamomum* Maton.) and Clove (*Syzygium aromaticum* (L.) Merr. & L.M.Perry).

ICAU DU	VOIK 5			
S.No.	Author name	Title of the book	Publishers name	Edition &
				Year of
				publication
	Henry, A. N. and M.	An aid to the International	Today and Tomorrow's	1 st ed., 2009
1.	Chandrabose.	Code of Botanical	Printers and Publisher,	
		nomenclature	New Delhi	
	Simpson, M.G.	Plant Systematics	Academic Press,	2 nd ed 2011
2.			Newyork.	
	Sharma O.P.	Plant Taxonomy	Mc Graw Hill, New	2 nd ed., 1993
3.			Delhi.	
	Pandey, B.P.	Text book of Economic	S. Chand & Company,	5 th ed., 1999
4.		Botany	New Delhi	
	Sambamurthy,	A Text book of Economic	Wiley Eastern Limited,	1 st ed., 1989
5.	A.V.V.S. and	Botany	New Delhi	
	N.S.Subramanyam.	-		

Text Books

Reference Books

S.No.	Author name	Title of the book	Publishers name	Edition & Year
	Gurucharan Singh	Plant Systematics: An	CRC Press	3 rd ed., 2018
1.		Integrated Approach,		
	Davis, P.H. and	Principles of	Oliver Boyd London	1 st ed., 2011
2.	Heywood, V.M	Angiosperm Taxonomy		
	Michael G	Plant systematics	Academic Press	2 nd ed., 2010
3.	Simpson	-		

11 hrs

12 hrs

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Course Designer

Dr. C. Krishnaveni Dr. K. Kiruthika

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22C06	Core Paper - VI Genetics, Plant breeding and Biostatistics	Theory	58	2	-	4

- To study the Mendelian principles of genetics
- To study the inheritance pattern of characters
- To understand the breeding methods with specific objective
- To understand the quality trait of each crop
- To study the application of statistics in biology

Course Learning outcomes

On the successful completion of the course, students will be able to:

CLO	CO Statement	Knowledge
Number		Level
CLO1	Understand the Mendelian principles, different types of inheritance pattern and basic statistics	K1,K2,K3
CLO2	Develop critical understanding of basis of genes and their interactions at population levels	K1,K2,K3
CLO3	Impart knowledge of objectives, quality traits and breeding methods for crop improvement	K1,K2,K3
CLO4	Develop analytical, quantitative and problem-solving skills from genetics and statistics	K1,K2,K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М

S- Strong; M-Medium

Syllabus

Unit I-Genetics

*Mendelism- Mendel's Laws of heredity - Monohybrid and Dihybrid Cross; Test Cross and Back Cross. Deviation from Mendelian principle - Incomplete Dominance; Gene Interaction - Complementary, Supplementary, Duplicate and Inhibitory factors, Epistasis. Linkage- Complete and incomplete linkage and its importance.

Unit II- Genetics

Extra nuclear inheritance - Cytoplasmic Inheritance (plastid inheritance in *Mirabilis jalapa*, Polygenic Inheritance (skin colour in man and Kernel colour in wheat). Multiple Alleles (ABO

11hrs

Blood Groups in Man); Sex Determination XX-XO, XX-XY methods.Sex determination in plants. Sex linked inheritance in Human - colour blindness and Haemophilia.

Unit III- Plant Breeding

Objectives, Plant Introduction-types, procedure, purpose, merits and demerits, Hybridization Techniques-objectives, types, procedure-choice of parents, evaluation of parents, emasculation, bagging, tagging, pollination, harvesting and F₁generation. Heterosis and inbreeding depression (outline only).

Unit IV- Plant Breeding

Methods of breeding for Self-pollinated, cross-pollinated and asexually propagated crops; pure line selection, mass selection and pedigree selection.

Breeding for crop Quality - Rice, Cotton and Tomato.Breeding for nutritional quality.Sources for quality traits. Vitamin A in tomato.

Unit V- Biostatistics

Biostatistics: - definition, basic principles; Sample and sampling, Collection and representation of data-Tabulation of data, Graphical representation-Histogram, Line Diagram, Bar Diagram, and Pie chart. Measures of Central Tendency- Mean, Median and Mode; Measures of Dispersion - Range, Standard Deviation and Standard error. Students't' test, Chi-square test.

Text Bo	Text Books							
S.No.	Author name	Title of the book	Publishers name	Edition & Year of publication				
1.	Gupta, P.K.	Genetics,	Rastogi Publications, Meerut. New	4 th ed., 2014				
2.	Verma, P.S. and Agarwal, V.K.	Cytology, Genetics and plant breeding	S.Chand& Co, New Delhi	2010				
3.	Shukla, R.S. and Chandel, P.S.	Cytogenetics, evolution, Biostatistics and Plant Breeding	S. Chand & Co, New Delhi	3 rd ed., 2009				
4.	Singh, B.D	Plant Breeding:Principles and Methods	Kalyani Publishers, New Delhi	7 th ed., 2005				
5.	Chaudhari, H.K.	Elementary Principles of Plant Breeding	Oxford – IBH, New Delhi	2 nd ed., 1984				
D	D 1							

Reference Books

S.No.	Author name	Title of the book	Publishers name	Edition & Year of publication
1.	Zar, J.H.	Biostatistical Analysis,	Pearson Publication. U.S.A.	4 th ed., 2012
2.	Gardner, E.J, Simmons, M.J, Snustad, D.P	Principles of Genetics	Wiley-India.	8 th ed., 2008

12 hrs

12 hrs

	Strickberger,	Genetics	Macmillan Co. New	3 rd ed., 1985
3.	N.W.		York.	

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Course Designer

Dr. H. Rehana Banu, Dr. R. Sumathi, Dr. E.Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21E01	Dietetics, Food Processing and Preservation	Theory	73	2	-	5
D						

- To study the nutritive importance of food stuffs.
- To understand food security and RDA.
- To recognize the value of food processing methods.
- To gain knowledge in food preservation and packaging.
- To appreciate the methods of quality control.

Course Learning outcomes

On the successful completion of the course, students will be able to:

CLO	CO	Knowledge
Number	Statement	Level
CLO1.	Impart the knowledge on nutritive value of food stuffs and thevarious sources of food.	K1,K2,K3,K4,K5
CLO2.	Recognize diet basedfoods on the needs of people.	K1,K2,K3,K4,K5
CLO3.	Illustrate food processing methods.	K1,K2,K3,K4,K5
CLO4.	Apply the knowledge in preventing food spoilage.	K1,K2,K3,K4,K5
CLO5.	Employ good manufacturing practice.	K1,K2,K3,K4,K5

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CL01.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М
CLO5.	S	S	S	S	S

S- Strong; M-Medium

Syllabus

Unit I

Introduction – Nutritive importance of proteins, carbohydrates, fats, vitamins and minerals. Food sources – Plant and animal food. Fermented vegetables. Milk Products. Nutritional requirements and food security.

Unit II

Balanced diet, Recommended Dietary Allowances (RDA). Diet counseling. Menu planning. Nutritional and food requirements of infants, expectant mothers, lactating women and old ages. Diet therapy and therapeutic diets. Diet for obesity, cardiovascular disease and diabetes.

Unit III

Food processing: processing of legumes, milk, vegetables, fruits, fish, meat, poultry and eggs. Food additives- mono-sodium glutamate, aspartame for flavor, enzymes for texture modification; synthetic/natural food coloring agents.

Unit IV

14 hrs

15 hrs

14 hrs

Food preservation: Physical, chemical and biological methods - drying, cooling, freezedrying, heating, curing, jellying, salting, pickling, smoking, canning, and irradiation, Ultra High Temperature (UHT). Food spoilage and food adulterants. Food sanitation- safe methods of handling food.

Unit V

15 hrs

Packing of preserved foods: concepts, definition, significance, classification, Primary packaging materials, methods of packaging - vacuum packaging, Modified Atmosphere Packaging (MAP), Controlled Atmosphere Packaging (CAP) & bio-degradable packages. Quality control; food standards: Agricultural Marketing (AGMARK), Food Safety and Standards Authority of India (FSSAI), Prevention of Food Adulteration (PFA). Good laboratory practice (GLP) Good Manufacturing Practice. Nutrition information on labels.

The topics in bold shall be taught through Flipped mode of learning. The topics shall be studied by visiting a Food Processing Institute / Industry.

Text Books

S.No.	Author name	Title of the book	Publishers name	Edition &
				Year of publication
1.	Srilakshmi, B.	Dietetics	New Age	9^{th} ed.,
			International	2024
			Limited, Publishers,	
			New Delhi	
2.	Gordon L.	Food Packaging Science	New age	1^{st} ed.,
	Robertson	and Technology	International Ltd.	2019
			Publishers, New	
			Delhi	
3.	Michael	Essential Guide to Food	RSC Publishing,	1^{st} ed.,
	Saltmarsh, Mike	Additives	UK	2013
	Saltmarsh			
4.	James M Jay	Modern Food	CBS Publishers &	4^{th} ed.,
		Microbiology	Distributors, New	2005
			Delhi	

Reference Books

S.No.	Author name	Title of the book	Publishers name	Edition&
				Year of
				publication
1.	Winton, A. and	Milk and milk products	Agrobios, Jodhpur	1 st ed., 2022
	Winton, K.B.			
2.	Fellows, P.J.	Food processing	Woodhead	4 th ed., 2020
		technology: Principle and	Publishing, United	
		Practice	Kingdom	
3.	William C	Food Microbiology	McGraw-Hill	5 th ed., 2017
	Frazier, Dennis C		Publishing	
	Westoff		Company, New	
			Delhi	
4.	Jung H. Han	Innovations in Food	Academic Press,	2^{nd} ed.,
	-	Packaging	Inc	2014

Activities: Seminar, Assignment, Quiz and Institute/Industry visit Flipped mode: online links

- https://www.youtube.com/watch?v=UWhkFYDB8J4
- https://www.youtube.com/watch?v=CkoOm4Lxmjk
- https://www.fssai.gov.in/home
- https://www.youtube.com/watch?v=JLDFMkpENzk

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/ Animation

Course Designer

Dr. M. Kanchana Dr. K.S. Tamil Selvi; Dr. B.S Chitra Devi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21E02	AOS – II Bioinoculants Paper I	Theory	73	2	-	5
Ducomable						

- To study the classification of bioinoculants.
- To study the growth of microbes and their distribution like bacterial, fungal and algal bioinoculants.
- To understand the Microbial solubilization, ecto and endo mycorrhiza.

Course Learning outcome

On the successful completion of the course, students will be able to understand the following:

CLO Number	CLO Statement	Knowledge Level
CLO1	Identify the type of bioinoculants	K1,K2,K3
CLO2	Recognize and appreciate soil as the medium for the growth of microbes and their diversity	K1,K2,K3
CLO3	Working of the different groups of bacterial, fungal and algal bioinoculants.	K1,K2,K3
CLO4	Use phosphorus mobilization, ecto and endomycorrhizal activities for improving plant growth	K1,K2,K3
CLO5	Analyse the microbial solubilization in silicates and zinc.	K1,K2,K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М
CLO5.	S	S	S	S	S

S- Strong; M-Medium

Syllabus

Unit -1

15 hrs

Definition, Classification of fertilizers (synthetic fertilizers & organic manures), Bioinoculants, Microbial inoculants in Agriculture - contributions of microorganisms to soil fertility. Advantages and limitations of bioinoculants over chemical fertilizers.

Soil as a medium for growth of plants- Soil microorganisms- Distribution of microorganisms in soil. Factors influencing the microbial populations in soil. Rhizosphere and mycorrhizosphere concept. 15 hrs

Unit-III

Different groups of bioinoculants- bacterial, fungal and algal bioinoculants. Phosphate solubilizers- Aluminium/iron solubilisation - Bacillus megaterium, Bacillus circulansand Pseudomonas sp.

Unit-IV

Phosphorus mobilization in the soil- Mycorrhizal types - Endomycorrhiza, Ectomycorrhiza and Orchid mycorrhiza.

Unit- V

Microbial solubilisation of silicates and zinc- Plant growth promoting rhizobacteria- application of silica nanoparticles as manures.

Text Books

S.No.	Author name	Title of the book	Publishers name	Edition& Year of publication
1	Satyanarayana, U	Biotechnology	Books and Allied Publishers. Ltd. Kolkatta	1 st ed., 2005
2	Dubey, R.C.	A Text book of Biotechnology	S. Chand & Co, New Delhi	4 th ed., 2004
3	Kumaraesan, V.	Biotechnology	Saras Publication,Nagercoil	1 st ed., 2001

Reference Books

S.No.	Author name	Title of the book	Publishers name	Edition & Year of publication
1.	Subba Rao, N.S	Advances in Agricultural Microbiology	Oxford and IBH Publ. Co., New Delhi.	3 rd ed., 2020
2.	Subba Rao. N.S	Biofertilizers in Agriculture and Forestry	Oxford and IBH Publ. Co., New Delhi P.242	3 rd ed., 2019
3.	Nutman, P.S.	Symbiotic nitrogen fixation in plants	Cambridge Univ. Press, London, P.584.	1976

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/ Animation

Course Designer

Dr. R.Sumathi

Unit-II

14 hrs

14hrs

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21E03	AOS III- Environmental Biotechnology	Theory	73	2	-	5
- D 11						

- To study the biodiversity, conservation of endangered plants and Global biodiversity information system.
- To study the concepts, types, data structure of GIS.
- To understand the strategies for effluent treatment in different industries using microbes.
- To appreciate the types of IPR, biohazards and biosafety guidelines.

Course Learning outcomes

On the successful completion of the course, students will be able to understand the following:

CLO Number	CLO Statement	Knowledge Level
CLO1	Study the biodiversity types, conservation methods, endangered plants and Global biodiversity information system.	K1,K2,K3
CLO2	Concepts, types, data structure of GIS and output of geographical data.	K1,K2,K3
CLO3	Familiarize the sewage and waste water treatments at primary, secondary and tertiary levels.	K1,K2,K3
CLO4	Study the strategies for effluent treatment in different industries using microbes.	K1,K2,K3
CLO5	Analyze the types of IP, biohazards and biosafety guidelines.	K1,K2,K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	S	М	S
CLO2.	S	S	S	М	S
CLO3.	S	S	М	М	М
CLO4.	S	S	М	М	М
CLO5.	S	S	S	S	S

S- Strong; M-Medium Svllabus

Unit -1-Biodiversity

15 hrs

Definition; Geographical causes for diversity; Types of diversity: Genetic diversity, Species diversity and Ecosystem diversity; Quantifying biodiversity; importance of biodiversity; *in-situ&ex-situ* conservation; Gene banks; Cryopreservation; Assessing, analyzing and documenting biodiversity; Introduction to biodiversity database: Endangered plants, Endemism and Red data books; Global biodiversity information system.

Unit II-GIS and Environmental Monitoring

Concept of Remote sensing; Concept of GIS; Types of Geographical Data; Data Structure; Vector and Raster data: their Advantages and Disadvantages; Input, verification, storage and output of geographical data; Importance of Geographical Information System in environmental studies.

Unit III - Effluent treatment systems

Sewage and waste water treatments systems; Primary, secondary and tertiary treatments. Biological treatments- aerobic versus anaerobic treatments; Environmental pollution control-Bioremediation, Bioaugmentation and Biostimulation; Biofilms in treatment of waste water; Aerobic Biofilms; Bioreactors for Sewage and waste water treatments systems; Primary, secondary and tertiary treatments.

Unit IV- Removal of specific pollutants

Physicochemical characteristics and treatment strategies for effluent generated by Distillary and Fermentation industry, Fertilizers and Pesticide manufacturing industries, Dyes and textile industries, Paper and pulp industries, Food and dairy industries. Bioremediation.

Unit V-IPR & Biosafety

Types of Intellectual Property Rights (IPR): Patents, Trademarks, Copyright and Related Rights, Industrial Design, Traditional Knowledge, Geographical Indications. **Biosafety**

Introduction to Biological Safety Cabinets; Primary Containment for Biohazards; Biosafety Levels; Recommended Biosafety Levels for Infectious Agents and Infected Animals; Biosafety guidelines - Government of India; Definition of Genetically Modified Organisms (GMOs) & Living Modified Organisms (LMOs).

Text Books

S.No.	Author name	Title of the book	Publishers name	Edition&
				Year of
				publication
1.	Kumar.S.	Basics of Remote	Laxmi Publications,	1^{st} ed.,
		Sensing and GIS	Chennai.	2019
2.	Acharya,N.K.	Text book on	Jain Book Depot, New	7^{th} ed.,
	-	Intellectual Property	Delhi	2014
		Rights.		
3.	Agarwal,S.K.	Environmental	APH Publishing	1^{st} ed.,
		Biotechnology	Corporation	2009
4.	Sateesh.M.K	Bioethics and Biosafety	IK International Publishing	2008
			House Pvt Ltd, New Delhi.	

Reference Books

S.No.	. Author name		e	Title of the book	Publishers name	Edition&
						Year of
						publication
1	John	R	and	Remote Sensing of the	Dorling Kindersly Pvt	2 nd ed., 2009
	Jenson			Environment an Earth	Ltd, New Delhi	

14 hrs

15 hrs

15 hrs

			Resource Pe	erspective:			
2	Marcos	Von	Basic princi	ples of Waste	IWA	Publishing,	2007
	Sperling		Water Treatment		Newyork		
3	Purohit S.S	and	Ecology,	Environment	Agrobios, I	ndia,Jodhpur	1 st ed., 2003
	Ranjan. R		and Pollution			_	

Pedagogy: E-content, Lecture, Power point presentation, Seminar, Quiz, Group Discussion and Video/Animation

Course Designer

Dr.R.Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22CP3	Core Practical III (Core Paper V, VI & AOS I/II/III)	Practical	-	-	120	4

- Collection, identification and preparation of herbarium
- To understand the factor interaction in plants and solve the problems involved in it.
- To apply common statistical tools to derive inference.
- To get acquainted with the techniques of food preservation

Course Learning outcomes

On the successful completion of the course, students will be able to:

CLO Number	CLO Statement	Knowledge Level
CLO1.	Identify the plants using taxonomically and to observe the economic importance	К3
CLO2.	Interpret the genetic problems and the hybridization techniques involved in plants	К3
CLO3.	Apply common statistical tools to derive inference.	K3
CLO4.	Analyze the nutritional quality and adulterants of various food stuffs	K4

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	М	S	М	S	S
CLO2	S	М	S	S	М
CLO3	S	S	М	М	S
CLO4	М	S	S	М	S

S- Strong; M-Medium

Syllabus

Paper V - Plant Taxonomy and Economic Botany (45 hrs)

Plant Taxonomy:

Study of forms belonging to the families mentioned in the syllabus and submission of herbarium of 15 plants representing biological spectrum.

A field visit to study the vegetation and flora of the plants.
Economic Botany - Spotters:

Fruits-Terminalia chebula Retz., Elettaria cardamomum Maton., Leaves- Indigofera tinctoria L., Bast Fibre- Gossypium hirsutum L., Jute-Chorchorus olitorius L., Resin-Ferula asafetida L., Flower bud-Syzygium aromaticum (L.) Merr. & L.M.Perry, Tuber-Solanum tuberosum L., Grains-Oryza sativa L., Gum-Acacia arabica (L.f.) Willd.

Paper VI - Genetics, Plant breeding and Biostatistics (45hrs)

Genetics and Plant breeding: Simple problems in genetics. Hybridization techniques – different types of Emasculation, bagging, tagging.

Field visit to any one Plant breeding research Institutes-Sugarcane breeding institute/ central institute for cotton research, Coimbatore. IARI –Wellington/ Tamilnadu Agricultural University, Coimbatore.

Biostatistics -1. Mean, Median, Mode, Standard Deviation & Standard errors, 2. Students 't' test 3. Chi-square test

AOS I- Dietetics, Food Processing and Preservation (30 hrs)

Individual experiments:

1. Qualitative detection of nutrients in food:

- i. Carbohydrates
- ii. Proteins
- iii.Fats
- iv. Vitamins
- v. Minerals
- 2. Detection of Food additives
 - i. Mono-sodium glutamate
 - ii. Aspartame
- 3. Milk spoilage test.
- 4. Detection of Adulterants in oils and Fats.
- 5. Detection of Adulterants in spices and spices powder.

Demonstrations:

- 1. Fermented vegetables Sauerkraut
- 2. Milk Products Yoghurt, Cheese
- 3. Preparation of sample menu based on Recommended Dietary Allowance for:
 - i. Infants
 - ii. Expectant mother
 - iii.Lactating women
 - iv. Old age people
 - v. Therapeutic Diets:
 - a. Obesity
 - b. Cardiovascular disease
 - c. Diabetes
- 4. Preparation of low calorie diet.
- 5. Food preservation:
 - i. Preparation of pickles
 - ii. Preparation of jams
 - iii. Preparation of jellies

- iv. Canning & bottling of vegetable and fruit.
- 6. Isolation and identification of storage mycoflora from food stuffs/vegetables/fruits.

Or

AOS-II – Bioinoculants Paper I

- 1. Isolation of Rhizobium from legume root nodules; purification and characterization of Rhizobium.
- 2. Testing the efficiency- leonard jar technique and plant infection test.
- 3. Rhizobium strain identification by immunological methods.
- 4. Isolation of *Azospirillum* from rhizosphere.
- 5. Identification and characterization of *Azospirillum*.
- 6. Isolation of Phosphobacterium from soils.
- 7. Quantitative determination of Phosphate solubilization by phosphobacteria

Or

AOS-III- Environmental Biotechnology

a. Environmental Parameters

- 1. Estimation of halides in water samples by potentiometer.
- 2. Estimation of CO $^{2+}$ and Ni $^{2+}$ by colorimeter/spectrophotometer.
- 3. Estimation of sulphates by turbidometer.
- 4. Detection of heavy metals- Zinc, Cobalt, Cadmium, Lead, Ferrous in anyone of the polluted sample.
- 5. Sampling techniques: wastewater analysis for physico-chemical characteristics such as pH, conductivity, Total dissolved solids (TDS), Dissolved oxygen (DO), Biological oxygen demand (BOD), Chemical oxygen demand (COD), CO₂, alkalinity, nutrients, chlorides, hardness, set ability of solids.

b. Bioremediation

- 1. Microbial degradation of textile dyes/pesticides/hydrocarbons and oils
- 2. Assay of enzymes involved in biotransformation.
- 3. Phytoremediation of metal contaminated soil samples using Tomato/Brassica plants and estimation of metal removal in soil and metal accumulation in plants using Atomic Absorption Spectrum (AAS).
- 4. Pollutant removal using microorganisms from industrial effluent.
- 5. Effect of Heavy metals on microbial growth and microbial leaching of metals.
- 6. Effect of Pesticides on soil microorganism

Course Designers

Dr. K.Gajalakshmi Dr. K.S. Tamil Selvi Dr. B. S.Chithra Devi Dr. R. Sumathi

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22AC1	Food Microbiology	Theory	-	-	-	5
Preamble						

• To understand the interaction between micro-organisms and food

- To understand the factors affecting the growth of microbes.
- To understand the contamination, preservation and spoilage of different foods
- To realize the microbes underlying food spoilage and food borne illnesses.
- To appreciate the role of government agencies involved in food sanitation and control

Course Learning outcomes

On the successful completion of the course, students will be able to understand the following:

CLO Number	CLO Statement	Knowledge Level
CLO1	Understand the interaction between micro-organisms and food	K1
CLO2	Know the factors affecting the growth of microbes	K2
CLO3	Analyze the Contamination, preservation and spoilage of different foods	К3
CLO4	Realize the microbes underlying food spoilage and food borne illnesses.	К3
CLO5	Appreciate the role of government agencies involved in food sanitation and control	К3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	М	S	S
CLO2.	S	S	М	М	S
CLO3.	S	S	М	М	S
CLO4.	S	S	М	М	S
CLO5.	S	S	М	М	М

S- Strong; M-Medium

Syllabus

Unit I

Food and microorganisms- Food as a substrate, important microbes, contamination of food, principles underlying spoilage: chemical changes caused by microorganisms. Principles of food preservation: Asepsis, removal of microbes, maintenance of anaerobic conditions

Unit II

Contamination, preservation and spoilage of foods: cereals and cereal products; spoilage of sugar and sugar products, fruits and vegetables, milk and milk products.

Unit III

Contamination, preservation and spoilage of foods: meat- meat products; fish and other sea foods, eggs and poultry; canned foods and miscellaneous foods.

Unit IV

Foods and Enzymes from microorganisms. Food related diseases: food borne illness, food poisoning, toxins and intoxicants. Primary sources of food poisoning - bacteria and moulds. Prevention of food borne diseases.

Unit V

Microbiology in relation to food sanitation; enforcement and control agencies-International, national, state and private agencies. Microbiological criteria for foods.

Text Books

S.No.	Author name	Title of the book		Publishers name	Edition & Year of publication
1.	William C	Food Microbiology		McGraw-Hill	5 th ed., 2008
	Frazier, Dennis C			Education, New	
	Westoff, Vanitha,			York.	
	K.N.				
2.	Frazier C., D.C.	Food Microbiology		Tata McGraw Hill,	4 th ed., 2000
	Westhoff.			New Delhi	
3.	Steinkraur K.H.	Indigenous	Food	Academic Press,	1 st ed., 1988
		Fermentation		New York	

Reference Books

S.No.	Author name	Title of the book	Publishers name	Edition &
				Year of
				publication
1	Adams, M.R and	Food Microbiology	New age	2 nd ed., 1996
	Moss, M.O.		International (P)	
			Ltd. Publ., New	
			Delhi	
2	Benwart, G.J.	Basic Food Microbiology	CBS Publishers &	1 st ed., 1987
			Distributors, New	
			Delhi	

Course Designer

Dr. K.S. Tamil Selvi Dr.E.Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22AC2	Nutrition Science	Theory	-	-	-	5

Preamble

- To understand the vital link between nutrition and health
- To gain knowledge on functions of nutrients
- To understand the metabolism of nutrients
- To realize the importance of deficiency of nutrients
- To appreciate the role of government agencies involved in combating malnutrition

Course Learning outcomes

On the successful completion of the course, students will be able to understand the following:

CLO	CLO Statement	Knowledge
Number		Level
CLO1	Understand the Vital link between nutrition and health	K1
CLO2	Acquire knowledge on functions of nutrients	K2
CLO3	Appreciate the Metabolism of nutrients	K2
CLO4	Relate the Importance of deficiency of nutrients	K3
CLO5	Comprehend the Role of government agencies involved in combating malnutrition	К3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1.	S	S	L	М	S
CLO2.	S	S	L	М	S
CLO3.	S	S	L	М	S
CLO4.	S	S	L	М	S
CLO5.	S	S	L	М	М

S- Strong; M-Medium Svllabus

Unit I

Introduction to nutrition science- definitions and history. Nutritional importance of carbohydrates, proteins and fats.

Unit II

Energy metabolism– determination of energy value of food, determination of energy requirements, under nutrition and protein energy malnutrition

Unit III

Macro minerals functions and its deficiency disorders– Calcium and Phosphorus; micro minerals functions and its deficiency disorders– Iron, Iodine, Copper, Fluorine, Zinc and Chromium.

Unit IV

Vitamins functions and its deficiency disorders – Fat soluble - A, D, E and K; water soluble– Thiamin, Riboflavin, Niacin, Folic acid, Vitamin B complex and Vitamin-C

Unit V

Antioxidants, Water and electrolyte balance. Assessment of nutritional status, National nutrition policy. Role of International and National agencies in combating malnutrition. Computers in management of nutrition practice.

lext Bo	DOKS					
S.No.	Author name	Title of the book	Publishers name	Edition & Year of publication		
1.	Srilakshmi, B.	Nutrition Science.	New age International Ltd. Publishers, New Delhi.	4 th ed., 2012		
2.	Mudambi, R. Sumathy and Rajagopal, M.V	Fundamentals of food and nutrition	New age International Ltd. Publishers, New Delhi	4 th ed., 2005		
3.	Sheel Sharma	Human nutrition and Meal planning	Jnananda Prakashan, P&D, New Delhi	1 st ed., 2000		
Reference Books						
S.No.	Author name	Title of the book	Publishers name	Edition& Year of publication		
1.	Swaminathan, M.	Advanced textbook on food and nutrition	Bangalore printing and publishing company, Bangalore	2 nd ed., 2002		
2.	Arti Bhatia	Nutrition and Dietetics	Anmol Publications, PVT. LTD., NewDelhi	2000		
3.	Sizer, Francis Sienkiewicz and Whitney Eleanar Whitney	Nutrition – concepts and controversies	Wadsworth, Australia	8 th ed., 2000		
4.	Srilakshmi, B	Food science	Newageinternationalltd.Publishers,NewDelhi.	1 st ed., 1997		

Course Designer Dr. K.S. Tamil Selvi Dr.E.Uma

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21PROJ	Project and Viva-voce	Project	-	-	60	5
Preamble		•				

To make the students to understand the importance of experimental analysis, scientific approach in solving problems related to the environment and society and to educate and train the students to write scientific papers

Group Project &Viva Voce

Each group comprising of 5 members will be allotted to a staff Co-ordinator. A specific problem will be assigned to the students or they will be asked to choose a problem /area of their interest. The topic / area of work will be finalized at the end of the IV Semester, allowing scope for the students to gather relevant literature during the vacation. The research work can be carried at the college or any other organization approved by the staff Co-ordinator and the HoD.

Area of work

Cytology, Plant Biology, Plant Biotechnology, Microbiology, Tissue culture and Medicinal Botany & Environmental Sciences, Food and nutrition.

Methodology

Each project should contain the following details: Brief introduction on the topic Review of literature Materials and Methods Experimental Results and Discussion – evidences in the form of figures, tables and photographs can be enclosed Summary Bibliography The above content should not exceed 50 pages.

Evaluation Internal evaluation of the project work will be carried out in stages as described below.

I Review	Selection of the field of study, topic & literature collection		- 15 marks
II Review	Research design & data collection		-15 marks
III Review	Analysis & conclusion		- 20 marks
	Preparation of rough draft		
		Total	- 50 marks

End Semester Examination Evaluation of the project

	Relevance of the topic to the academic / society	,	- 5 marks
	Objectives		- 5 marks
	Experimental design		- 10 marks
	Expression of results and discussion		- 10 marks
		Total	- 30 marks
Viva voce			
	Presentation		-10 marks
	Discussion		-10 marks
		Total	-20 marks
	G	Frand Total	- 100 marks

Viva Voce / presentation will be conducted by a panel of internalexaminers including the HoD and the staff Co- ordinator guiding theproject. A PowerPoint presentation by the group before theaudience will be evaluated on the basis of student's response toquestions.

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL22SBCE	Coursera Course - Climate Change and Health: From Science to Action	Theory	45	-	-	3

S.No.	Topic of the Course	Link of the Course	Duration in hrs
1.	What is Climate Change?	https://www.coursera.org/learn/what-is-climate-	6
		change?specialization=our-responses-climate-	
		<u>change</u>	
2.	Tropical Forest Landscapes 101:	https://www.coursers.org/learn/tropicalforests101	20
	Conservation & Restoration	https://www.courseia.org/learl/tropicatiorests101	
3.	Climate change and Indigenous	https://www.coursera.org/learn/climate-change-	14
	People and local communities	indigenous-communities	
4.	Our Earth's future	https://www.coursera.org/learn/earth-climate-	8
		<u>change</u>	

1. What is Climate change?

- Week 1 The Climate System and Climate Change 2 hours
- Week 2 Impacts of Climate Change 2 hours
- Week 3 Attitudes about Climate Change 3 hours

2. Tropical Forest Landscapes 101: Conservation & Restoration

- Week 1 Why conserve and restore tropical forest landscapes? 3 hours
- Week 2 Ecology of tropical forest landscapes -3 hours
- Week 3 Social considerations for restoration and conservation 3 hours
- Week 4 Conservation strategies 3 hours
- Week 5 Restoration fundamentals 3 hours
- Week 6 Agroforestry and agroecology 3 hours
- Week 7 Funding conservation and restoration 4 hours

3. Climate change and Indigenous People and local communities

Week 1 - Climate change and Indigenous Peoples and local communities - 1 hour

- Introduction 2 hours
- Week 2 Climate change impacts on indigenous peoples and local communities 3 hours
- Week 3 Coping and adapting to climate change impacts 3 hours
- Week 4 Local Indicators of climate change impacts 2 hours
- Week 5 The role of IPLC in global climate governance 3 hours

4. Our Earth's future

- Week 1 Climate Change Is Happening: See It 2 hours
- Week 2 It All Comes Down to the Ocean 1 hour
- Week 3 Climate Change is Happening: Model It 1 hour
- Week 4 Living with Climate Change 1 hour
- Week 5 Mitigate, Adapt, or Suffer? -2 hours

COURSE NUMBER	COURSE NAME	CATEGORY	L	Т	Р	CREDIT
PL21SBP1	Skill Based Subject- Horticulture Practicals	Practical	-	4	41	3

Preamble

- ✓ To understand the preparation of vermicompost to grow various horticultural crops
- ✓ To get skilled in various horticultural techniques

Course Learning Outcomes

On the successful completion of the course, students will be able to

CLO	CLO Statement	Knowledge
Number		Level
CLO1	To gain knowledge on the various tools used in horticulture	K1
CLO2	To learn to prepare vermicompost and to construct	K2
	vegetable garden	
CLO3	To learn cut flower techniques	K2
CLO4	Develop skills to propagate various horticultural crops	K3

Mapping with Programme Learning Outcomes

CLOs	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1	S	S	М	М	М
CLO2	S	S	Μ	Μ	Μ
CLO3	S	S	М	М	S
CLO4	S	S	М	М	S

S- Strong; M-Medium

Syllabus

Practicals

- 1. Study of tools used in horticulture
- 2. Preparation of vermicompost
- 3. Build a vegetable garden
- 4. Cutting-leaf, root and stem cutting
- 5. Layering-simple and air layering
- 6. Grafting-splice and cleft grafting
- 7. Budding-T-patch and H-chip budding
- 8. Flower arrangement-Fresh and Dry Flowers
- 9. Microgreen cultivation
- 10. Hydroponics
- 11. Bonsai technique
- 12. Visit to nursery and gardens to get a detailed understanding on nursery management

managemen

Course Designer

Dr. K.S.Tamil Selvi; Dr. Sarah Jaison